nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.29 87-101
基于多维信号的电池安全性监控技术研究进展
基金项目(Foundation): 河北省高等学校科学技术研发项目“青年拔尖人才项目”(BJK2024123);河北省高等学校科学技术研究项目(JZX2023003);国家重点研发计划(2024YFE0213000)
邮箱(Email): hilldingfei@163.com;
DOI: 10.19996/j.cnki.ChinBatlnd.2025.02.002
摘要:

随着锂离子电池广泛应用于储能和电动交通领域,其安全性问题日益严峻。传统的电池监测技术主要侧重于电、热信号,而智能传感技术的进展使得力学、气体和声波信号的监测成为早期安全预警的重要手段。本文综述了智能传感技术在电池安全性分析中的应用,重点分析了多维信号在电池失效监测中的作用,讨论了其工作原理、技术优势及面临的挑战。通过多信号融合与综合分析,可显著提升电池的安全性、可靠性和使用寿命,为电池技术的优化与发展提供有力支持。

Abstract:

With the widespread use of lithium-ion batteries in energy storage and electric transportation,safety issues have been increasingly severed. Traditional battery monitoring techniques mainly focused on electrical and thermal signals, while advancements in smart sensing technologies have made the monitoring of mechanical, gas, and acoustic signals increasingly important for early safety warnings.This review summarizes the applications of smart sensing technologies in battery safety analysis, with an emphasis on the role of multi-dimensional signals in battery failure monitoring. The working principles,technical advantages, and challenges of these technologies are discussed. By integrating and analyzing multiple signals, the safety, reliability, and lifespan of batteries can be significantly improved, providing strong support for the optimization and development of battery technologies.

参考文献

[1] ZUBI G,DUFO-LóPEZ R,CARVALHO M,et al.The lithium-ion battery:State of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews,2018,89:292-308.

[2] DIOUF B,PODE R. Potential of lithium-ion batteries in renewable energy[J].Renewable Energy,2015,76:375-380.

[3] GUERFI A,DONTIGNY M,CHAREST P,et al.Improved electrolytes for Li-ion batteries:Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance[J]. Journal of Power Sources,2010,195(3):845-852.

[4] BALAKRISHNAN P G, RAMESH R, PREM KUMAR T.Safety mechanisms in lithium-ion batteries[J].Journal of Power Sources,2006,155(2):401-414.

[5] LEE S,KIM J,LEE J,et al.State-of-charge and capacity estimation of lithium-ion battery using a new opencircuit voltage versus state-of-charge[J]. Journal of Power Sources,2008,185(2):1367-1373.

[6] NG K S,MOO C S,CHEN Y P,et al.Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries[J]. Applied Energy,2009,86(9):1506-1511.

[7] TANG C,YUAN Z R,LIU G,et al.Acoustic emission analysis of 18650 lithium-ion battery under bending based on factor analysis and the fuzzy clustering method[J].Engineering Failure Analysis,2020,117:104800.

[8] ZHANG W F,LYU N W,JIN Y.Internal short circuit warning method of parallel lithium-ion module based on loop current detection[J]. Journal of Energy Storage,2023,72:108796.

[9] BENSAAD Y,FRIEDRICHS F,BAUMH?FER T,et al. Embedded real-time fractional-order equivalent circuit model for internal resistance estimation of lithiumion cells[J]. Journal of Energy Storage,2023,67:107516.

[10] SCHUSTER S F,BRAND M J,CAMPESTRINI C,et al. Correlation between capacity and impedance of lithium-ion cells during calendar and cycle life[J].Journal of Power Sources,2016,305:191-199.

[11] LEE C Y,LEE S J,TANG M S,et al.In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors[J].Sensors,2011,11(10):9942-9950.

[12] XIAO Z L,LIU C,ZHAO T T,et al.Review:Online monitoring of internal temperature in lithium-ion batteries[J]. Journal of the Electrochemical Society,2023,170(5):057517.

[13] ZHAO Y,STEIN P,BAI Y,et al.A review on modeling of electro-chemo-mechanics in lithium-ion batteries[J].Journal of Power Sources,2019,413:259-283.

[14] BAIRD A R,ARCHIBALD E J,MARR K C,et al.Explosion hazards from lithium-ion battery vent gas[J].Journal of Power Sources,2020,446:227257.

[15] APPLEBERRY M C,KOWALSKI J A,AFRICK S A,et al.Avoiding thermal runaway in lithium-ion batteries using ultrasound detection of early failure mechanisms[J].Journal of Power Sources,2022,535:231423.

[16] ZHAO X, WANG P, CHAO P, et al. An overview on research progress of sensors for detecting safety of lithium batteries[J]. Journal of Transport Information and Safety, 2022, 40(6):127-136.

[17] CRESCENTINI M,SYEDA S F,GIBIINO G P.Halleffect current sensors:Principles of operation and implementation techniques[J].IEEE Sensors Journal,2022,22(11):10137-10151.

[18] DENG X Y,LI Z R,PENG Q X,et al.Research on the magneto-optic current sensor for high-current pulses[J].Review of Scientific Instruments,2008,79(8):083106.

[19] RIPKA P.Electric current sensors:A review[J].Measurement Science and Technology,2010,21(11):112001.

[20] YANG S L,ZHANG J.Current progress of magnetoresistance sensors[J].Chemosensors,2021,9(8):211.

[21] XU L,HUIJSING J H,MAKINWA K A A.A±4-a high-side current sensor with 0.9%gain error from-40℃to 85℃using an analog temperature compensation technique[J].IEEE Journal of Solid-State Circuits,2018,53(12):3368-3376.

[22] LEE C Y,PENG H C,LEE S J,et al.A flexible threein-one microsensor for real-time monitoring of internal temperature,voltage and current of lithium batteries[J].Sensors,2015,15(5):11485-11498.

[23]庄全超,徐守冬,邱祥云,等.锂离子电池的电化学阻抗谱分析[J].化学进展,2010,22(6):1044-1057.

[24] HOWEY D A,MITCHESON P D,YUFIT V,et al.Online measurement of battery impedance using motor controller excitation[J].IEEE Transactions on Vehicular Technology,2014,63(6):2557-2566.

[25] ABU QAHOUQ J A,XIA Z Y. Single-perturbationcycle online battery impedance spectrum measurement method with closed-loop control of power converter[J].IEEE Transactions on Industrial Electronics,2017,64(9):7019-7029.

[26] QIAN G J,WANG Y,ZHENG Y J,et al.The timescale identification and quantification of complicated kinetic processes in lithium-ion batteries based on microreference electrodes[J]. Journal of Power Sources,2024,614:235034.

[27] PRITZL D,LANDESFEIND J,SOLCHENBACH S,et al.An analysis protocol for three-electrode Li-ion battery impedance spectra:Part II. analysis of a graphite anode cycled vs. LNMO[J]. Journal of the Electrochemical Society,2018,165(10):A2145-A2153.

[28] ZHANG G S,CAO L,GE S H,et al.In situ measurement of radial temperature distributions in cylindrical Liion cells[J]. Journal of the Electrochemical Society,2014,161(10):A1499-A1507.

[29] YANG Y,RAYMAND D,BRANDELL D. A costeffective alternative to accelerating rate calorimetry:Analyzing thermal runaways of lithium-ion batteries through thermocouples[J]. Journal of Power Sources,2024,612:234807.

[30] VINCENT T A,GULSOY B,SANSOM J E H,et al.Insitu instrumentation of cells and power line communication data acquisition towards smart cell development[J].Journal of Energy Storage,2022,50:104218.

[31] WU L W,WANG J,LAN G T,et al.BaTiO3-BiMnO3perovskite NTC thermistors for high-temperature batteries[J].Journal of Alloys and Compounds,2025,1011:178396.

[32] SHADMAN R M,DANILOV D L,BAGHALHA M,et al.Adaptive thermal modeling of Li-ion batteries[J].Electrochimica Acta,2013,102:183-195.

[33] ZHU S X,HAN J D,AN H Y,et al.A novel embedded method for in situ measuring internal multi-point temperatures of lithium ion batteries[J]. Journal of Power Sources,2020,456:227981.

[34] LI B,PAREKH M H,ADAMS R A,et al.Lithium-ion battery thermal safety by early internal detection,prediction and prevention[J].Scientific Reports,2019,9(1):13255.

[35] ZHU Y Y,XIE J,PEI A,et al.Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries[J].Nature Communications,2019,10(1):2067.

[36] KIM S,WEE J,PETERS K,et al. Multiphysics coupling in lithium-ion batteries with reconstructed porous microstructures[J].The Journal of Physical Chemistry C,2018,122(10):5280-5290.

[37] HUANG J Q, ALBERO BLANQUER L,BONEFACINO J,et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors[J]. Nature Energy,2020,5(9):674-683.

[38] PENG J,JIA S H,YU H Q,et al.Design and experiment of FBG sensors for temperature monitoring on external electrode of lithium-ion batteries[J].IEEE Sensors Journal,2021,21(4):4628-4634.

[39] MATEEV V,MARINOVA I,KARTUNOV Z. Gas leakage source detection for Li-ion batteries by distributed sensor array[J].Sensors,2019,19(13):2900.

[40] WENGER M,WALLER R,LORENTZ V R H,et al.Investigation of gas sensing in large lithium-ion battery systems for early fault detection and safety improvement[C]//IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society. October 29-November 1,2014,Dallas,TX,USA. IEEE,2014:5654-5659.

[41] WANG P D,ZHOU H,ZHANG L M,et al.In situ Xray micro-computed tomography study of the damage evolution of prefabricated through-holes in SLM-Printed AlSi10Mg alloy under tension[J].Journal of Alloys and Compounds,2020,821:153576.

[42] FORTIER A,TSAO M,WILLIARD N,et al.Preliminary study on integration of fiber optic Bragg grating sensors in Li-ion batteries and in situ strain and temperature monitoring of battery cells[J].Energies,2017,10(7):838.

[43] NASCIMENTO M,NOVAIS S,DING M S,et al.Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries[J]. Journal of Power Sources,2019,410:1-9.

[44] YU Y F,VERGORI E,MADDAR F,et al.Real-time monitoring of internal structural deformation and thermal events in lithium-ion cell via embedded distributed optical fibre[J]. Journal of Power Sources,2022,521:230957.

[45] DENG Z,HUANG Z Y,SHEN Y,et al. Ultrasonic scanning to observe wetting and “unwetting” in Li-ion pouch cells[J].Joule,2020,4(9):2017-2029.

[46] CAI Z D,PAN T L,JIANG H Y,et al.State-of-charge estimation of lithium-ion batteries based on ultrasonic detection[J]. Journal of Energy Storage,2023,65:107264.

[47] TRAN M K,MATHEW M,JANHUNEN S,et al.A comprehensive equivalent circuit model for lithium-ion batteries,incorporating the effects of state of health,state of charge,and temperature on model parameters[J].Journal of Energy Storage,2021,43:103252.

[48] WANG Y J,TIAN J Q,SUN Z D,et al.A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems[J].Renewable and Sustainable Energy Reviews,2020,131:110015.

[49] ZHOU L,LAI X,LI B,et al.State estimation models of lithium-ion batteries for battery management system:Status,challenges,and future trends[J]. Batteries,2023,9(2):131.

[50] ZHOU X N,ZHOU S D,GAO Z C,et al.A statistical distribution-based pack-integrated model towards state estimation for lithium-ion batteries[J].eTransportation,2024,19:100302.

[51] MAO S Y,HAN X B,LU Y,et al.Multi sensor fusion methods for state of charge estimation of smart lithiumion batteries[J]. Journal of Energy Storage,2023,72:108736.

[52] ZENG Y S,MENG J H,PENG J C,et al. State of health estimation of lithium-ion battery considering sensor uncertainty[J].Journal of Energy Storage,2023,72:108667.

[53] XIONG R,SUN X J,MENG X F,et al. Advancing fault diagnosis in next-generation smart battery with multidimensional sensors[J]. Applied Energy,2024,364:123202.

[54] FENG X N,PAN Y,HE X M,et al.Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage,2018,18:26-39.

[55] QUAN R,ZHANG J,FENG Z X.Remote fault diagnosis for the powertrain system of fuel cell vehicles based on random forest optimized with a genetic algorithm[J].Sensors,2024,24(4):1138.

[56] ZHENG Y F,ZHANG Z J,ZHOU S D,et al.Innovative fault diagnosis and early warning method based on multifeature fusion model for electric vehicles[J].Journal of Energy Storage,2024,78:109681.

[57] YANG S C,WANG X,ZHOU S D,et al. Multiscenario failure diagnosis for lithium-ion battery based on coupling PSO-SA-DBSCAN algorithm[J]. Journal of Energy Storage,2024,99:113393.

基本信息:

DOI:10.19996/j.cnki.ChinBatlnd.2025.02.002

中图分类号:TM912;TP277

引用信息:

[1]金光辉,李乐,丁飞.基于多维信号的电池安全性监控技术研究进展[J].电池工业,2025,29(02):87-101.DOI:10.19996/j.cnki.ChinBatlnd.2025.02.002.

基金信息:

河北省高等学校科学技术研发项目“青年拔尖人才项目”(BJK2024123);河北省高等学校科学技术研究项目(JZX2023003);国家重点研发计划(2024YFE0213000)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文