nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2013, Z1, v.18;No.103,No.104 67-72
PEMFC新型流场的设计与数值模拟
基金项目(Foundation): 国家“863”项目(2007AA05Z150);; 国家自然科学基金项目(50528404)
邮箱(Email):
DOI:
摘要:

质子交换膜燃料电池流场的主要功能是为燃料电池提供反应物和生成物流动的场所。流场决定着质子交换膜燃料电池内部的物料分布。流场设计的优劣直接影响着电池的性能。利用FLUENT12.0进行了模拟,针对在反应中形成的气泡流,提出一种能够有效排除第二相的方案,即加入了副流道的设计。新型流场保留了传统流场的流道,并在脊上打出副流道入口通道。该种新型流场能较高地提高电池的性能,其原因为具有主副双流道的新型流场能够更有效地促进反应物氧气的排除和生成物水的排除。较传统流场相比,新型流场的流道截面上氧气的平均摩尔分数提高了16.4%,水的平均摩尔分数降低了66%,电流密度提高了20%。

Abstract:

The main function of the flow field of PEMFC is to provide the fuel cell reactants and products flowing spaces.The flow field determines the inside material distribution of PEMFC.The flow field design will directly affect the performance of the battery.Aiming at the stream of bubbles formed in the reaction,we propose a way to effectively rule out the second phase,namely,the vice channel design.New flow field retains the flow channel of the traditional flow field,and a inlet passage of the vice flow channel is dug at the ridge.The new flow field can improve the performance of the battery,because the new primary and vice double channel flow field can be more effective to promote the exclusion of the reactant oxygen and resultant water.Compared with the traditional flow field,the average mole fraction of oxygen in the flow channel cross-section of the new flow field increases by 16.4%,and the average mole fraction of water reduces by66%.The current density increases by 20%.

参考文献

[1]周繁,罗马吉,罗志平.无增湿燃料电池冷却水道设计及数值模拟[J].电池工业,2012,13(7):154-156,175.

[2]Prasad K B S,Suresh P V,Jayanti S.A hydrodynamicnetwork model for interdigitated flow fields[J].Int JHydrogen Energy,2009,34(19):8289-8301.

[3]Chen R,Zhao T S,Yang W W,Xu C.Two-dimension-al two-phase thermal model for passive direct methanolfuel cells[J].J Power Sources,2008,175(1):276-287.

[4]Jung G,Tu C H,Chi P H,et al.Investigations of flowfield designs in direct methanol fuel cell[J].J SolidState Electrochem,2009,13(9):1455-1465.

[5]熊济时,肖金生,潘牧.质子交换膜燃料电池流场模拟与结构尺寸优化[J].武汉理工大学学报(交通科学与工程版),2009,33(6):534-537.

[6]Sun L,Oosthuizen P H,McAuley K B.A numericalstudy of channel-to-channel flow cross-over through thegas diffusion layer in a PEM-fuel-cell flow system usinga serpentine channel with a trapezoidal cross-sectionalshape[J].Int J Thermal Sciences,2006,45(10):1021-1026.

[7]Yang H,Zhao T S.Effect of anode flow field design onthe performance of liquid feed direct methanol fuel cells[J].Electrochemical Acta,2005,50(16-17):3243-3252.

[8]Burgmanna S,Blankb M,Wartmanna J,Heinzela A.Investigation of the effect of CO2bubbles and slugs onthe performance of a DMFC by means of laser-opticalflow measurements[J].Energy Procedia,2012,28:88-101.

[9]Su A,Ferng Y M,Chen W T,et al.Investigating thetransport characteristics and cell performance for a mi-cro PEMFC through the micro sensors and CFD simula-tions[J].Int J Hydrogen Energy,2012,37:11321-11333.

[10]Medina P,Santarelli M.Analysis of water transport ina high pressure PEM electrolyte[J].Int J HydrogenEnergy,2010,35(11):5173-5186.

[11]刘桂成,张浩,王一拓,等.液体进料直接甲醇燃料电池工况的匹配及优化[J].电池,2012,42(1):7-10.

[12]Siroma Z,Fujiwara N,Ioroi T,et al.Enhanced per-formance of supercritical CO2treated Nafion 212mem-branes for direct methanol fuel cells[J].Int J Hydro-gen Energy,2012,37:4439-4447.

[13]刘桂成,姜颖,蒋钜明,等.直接甲醇燃料电池稳定性的初步研究[J].电池,2012,42(5):253-256.

[14]Huizhi Wang,Leung Dennis Y C,Jin Xuan.Modelingof an air cathode for microfluidic fuel cells,transportand polarization behaviors[J].Int J Hydrogen Ener-gy,2011,36(22):

基本信息:

DOI:

中图分类号:TM911.4

引用信息:

[1]姜颖,刘桂成,郑乐等.PEMFC新型流场的设计与数值模拟[J].电池工业,2013,18(Z1):67-72.

基金信息:

国家“863”项目(2007AA05Z150);; 国家自然科学基金项目(50528404)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文