nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 04, v.28 169-173+183
高容量商用方形锂离子电池外部短路行为
基金项目(Foundation):
邮箱(Email):
DOI: 10.19996/j.cnki.ChinBatlnd.2024.04.002
摘要:

外部短路是锂离子电池应用中的主要失效模式之一。外部短路会导致锂离子电池在较短的时间内产生较大的短路电流,带来热失控风险。当前锂离子电池外部短路的研究主要集中在小容量的电池上,但是不同容量的电池会在短路持续时间、短路温升以及温升滞后等行为上产生明显的差异。本文以51 Ah三元(NCM622)商用方形锂离子电池为研究对象,探究了锂离子电池在不同电阻下的短路行为,并关注了温度特征。研究表明,锂离子电池短路放电容量、短路电流对最高温度具有决定作用。高容量方形锂离子电池产热速率与导热速率的不平衡导致锂离子电池短路过程温升的滞后性。对短路后的电池进行拆解,电池内部发生了正极对隔膜的热粘接以及正极析铜现象,外部短路对锂离子电池产生了不可逆的破坏。基于锂离子电池在短路过程中电压、电流、温度的变化,提出锂离子电池短路机制。

Abstract:

External short-circuit(ESC) is one of the main sources for battery failures, which can cause large current value in short period, increasing the risk of thermal runaway.However, current study mainly focuses on the ESC behaviors of Lithium-ion batteries(LIBs) with less capacity, which is significantly distinguished form that of LIBs with high capacity.Herein, ESC experiments were conducted under various resistances to investigate short circuit behaviors of commercial prismatic LIBs with 51 Ah and based on NCM622 cathode, and especially for the evolution of temperature.The results indicate the discharge capacity and current value are both contributing to temperature rise.Furthermore, heat conductivity and temperature rise show unbalance relation, leading to hysteretic characteristic for high capacity prismatic LIBs.Post-mortem analysis of LIBs after ESC showed that cathode materials peeling off from current collector and cathode materials adhering to separator and copper plating on cathode demonstrated irreversible damage to LIBs.The ESC mechanism was proposed based on the ESC behaviors including the evolution of current, voltage and temperature.

参考文献

[1] TOMASZEWSKA A,CHU Z Y,FENG X N,et al.Lithium-ion battery fast charging:A review[J].eTransportation,2019,1:100011.

[2] DENG J,BAE C,DENLINGER A,et al.Electric vehicles batteries:Requirements and challenges[J].Joule,2020,4(3):511-515.

[3] JI X Q,XIA Q,XU Y X,et al.A review on progress of lithium-rich manganese-based cathodes for lithium ion batteries[J].Journal of Power Sources,2021,487:229362.

[4] HUANG Z H,ZHAO C P,LI H,et al.Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes[J].Energy,2020,205:117906.

[5] GANDOMAN F H,JAGUEMONT J,GOUTAM S,et al.Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles:Basics,progress,and challenges[J].Applied Energy,2019,251:113343.

[6] LIU B H,JIA Y K,YUAN C H,et al.Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading:A review[J].Energy Storage Materials,2020,24:85-112.

[7] HUANG W S,FENG X N,HAN X B,et al.Questions and answers relating to lithium-ion battery safety issues[J].Cell Reports Physical Science,2021,2(1):100285.

[8] FENG X N,OUYANG M G,LIU X,et al.Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J].Energy Storage Materials,2018,10:246-267.

[9] FENG X N,REN D S,HE X M,et al.Mitigating thermal runaway of lithium-ion batteries[J].Joule,2020,4(4):743-770.

[10] KRISTON A,PFRANG A,D?RING H,et al.External short circuit performance of Graphite-LiNi1/3Co1/3Mn1/3O2 and Graphite-LiNi0.8Co0.15Al0.05O2 cells at different external resistances[J].Journal of Power Sources,2017,361:170-181.

[11] CHEN Z Y,XIONG R,LU J H,et al.Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application[J].Applied Energy,2018,213:375-383.

[12] DONG T,WANG Y W,PENG P,et al.Electrical-thermal behaviors of a cylindrical graphite-NCA Li-ion battery responding to external short circuit operation[J].International Journal of Energy Research,2019,43(4):1444-1459.

[13] RHEINFELD A,STURM J,FRANK A,et al.Impact of cell size and format on external short circuit behavior of lithium-ion cells at varying cooling conditions:Modeling and simulation[J].Journal of the Electrochemical Society,2020,167(1):013511.

[14] WANG C Y,ZHANG G S,GE S H,et al.Lithium-ion battery structure that self-heats at low temperatures[J].Nature,2016,529(7587):515-518.

[15] YANG X G,LIU T,WANG C Y.Innovative heating of large-size automotive Li-ion cells[J].Journal of Power Sources,2017,342:598-604.

[16] WANG S N,LI Y H,LI Y Z,et al.A forced gas cooling circle packaging with liquid cooling plate for the thermal management of Li-ion batteries under space environment[J].Applied Thermal Engineering,2017,123:929-939.

[17]黄曙江.导热系数与温度关系的探讨[C]//2009年全国高等学校物理基础课程教育学术研讨会论文集.中国物理学会,2009.

[18] MA T Y,WU S Y,WANG F,et al.Degradation mechanism study and safety hazard analysis of overdischarge on commercialized lithium-ion batteries[J].ACS Applied Materials & Interfaces,2020,12(50):56086-56094.

[19] GUO R,LU L G,OUYANG M G,et al.Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J].Scientific Reports,2016,6:30248.

[20] ZHANG L L,MA Y L,CHENG X Q,et al.Capacity fading mechanism during long-term cycling of over-discharged LiCoO2/mesocarbon microbeads battery[J].Journal of Power Sources,2015,293:1006-1015.

[21] CHEN Z Y,ZHANG B,XIONG R,et al.Electro-thermal coupling model of lithium-ion batteries under external short circuit[J].Applied Energy,2021,293:116910.

[22] KIM G H,PESARAN A,SPOTNITZ R.A three-dimensional thermal abuse model for lithium-ion cells[J].Journal of Power Sources,2007,170(2):476-489.

基本信息:

DOI:10.19996/j.cnki.ChinBatlnd.2024.04.002

中图分类号:TM912

引用信息:

[1]刘英博,周仕贤,李艳旭等.高容量商用方形锂离子电池外部短路行为[J].电池工业,2024,28(04):169-173+183.DOI:10.19996/j.cnki.ChinBatlnd.2024.04.002.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文