425 | 0 | 62 |
下载次数 | 被引频次 | 阅读次数 |
锂离子电池的热失控、燃烧特性及其抑制技术是保障电化学储能安全发展的重要支撑。本文以16串1并的100 Ah磷酸铁锂电池模组为研究对象,开展了外部加热条件下的热失控、燃烧特性实验,获取了热失控温度、失控—燃烧转变特征,并在此基础上对比了全氟己酮和热气溶胶灭火剂对该类火的灭火效能。研究结果显示,100 Ah磷酸铁锂电池模组发生热失控时,加热面的温度为225℃,热失控最高温度为523℃,电池着火时的点火能主要来自模组内的电气短路。全氟己酮灭火剂的灭火时间约为9 s,具有一定的降温能力,药剂喷射后的最大降温幅度为78℃,但电池模组内的温度仍超150℃,且在灭火后模组发生了复燃。热气溶胶的灭火性能优于全氟己酮,灭火时间约为1 s,且灭火后模组无复燃,但其降温效果不明显。全氟己酮和热气溶胶均能扑灭模组内明火,但不能抑制模组热失控蔓延,且无法有效抑制电池模组外部的电解液流淌火,在消防设计时应注重电池模组内外部的综合防护。
Abstract:The thermal runaway, combustion characteristics, and suppression technology of lithiumion batteries are important supports for ensuring the safe development of electrochemical energy storage. The thermal runaway and combustion characteristics experiments were conducted of a 100 Ah lithium iron phosphate battery module with 16 strings and 1 parallel under external heating conditions. The thermal runaway temperature and runaway combustion transition characteristics were obtained. On this basis, the fire extinguishing efficiency of perfluorohexane and hot aerosol fire extinguishing agents for this type of fire was compared and studied. As the result shows, during the thermal runaway of the 100 Ah lithium iron phosphate energy storage module, the temperature of the heating surface was 225 ℃, and the highest temperature of thermal runaway was 523 ℃. The ignition energy when the battery caught fire mainly came from the electrical short circuit inside the module. The extinguishing time of perfluorohexane fire extinguishing agent was about 9 s, and it had a certain cooling ability. The maximum cooling amplitude after spraying the agent was 78 ℃, but the temperature inside the battery module still exceeded 150 ℃. The module reignited after extinguishing the fire. The fire extinguishing performance of hot aerosol was better than that of perfluorohexane, with a fire extinguishing time of about 1 s. The module does not reignite after extinguishing the fire, but its cooling ability was not significant. Both perfluorohexane and hot aerosol could extinguish fires inside the module, but could not blocked the spread of thermal runaway in the module. They also could not effectively suppress electrolyte flow fires outside the battery module. Therefore, comprehensive protection of the inside and outside of the battery module should be emphasized in fire protection design.
[1]程晓燕.我国电化学储能产业发展问题与对策研究[J].能源研究与利用,2023(3):39-42.
[2]孟庆庚.储能系统火灾事故调查与防治对策[J].消防科学与技术,2023,42(1):142-145.
[3]国家市场监督管理总局,国家标准化管理委员会.电化学储能电站安全规程:GB/T 42288—2022[S].北京:中国标准出版社,2022.
[4] ROTH E P, CRAFTS C, DOUGHTY D H, et al.Advanced technology development program for lithiumion batteries:thermal abuse performance of 18650 Liioncells[J]. Office of Scientific&Technical Information Technical Reports, 2004.
[5] ROTH E P,DOUGHTY D H.Thermal abuse performance of high-power 18650 Li-ion cells[J].Journal of Power Sources,2004,128(2):308-318.
[6] JHU C Y,WANG Y W,SHU C M,et al. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter[J]. Journal of Hazardous Materials,2011,192(1):99-107.
[7]张磊,张永丰,黄昊,等.热过载锂电池失控特性及其早期探测模式研究[J].消防科学与技术,2018,37(1):55-58.
[8]张磊.电动汽车锂电池火灾特性及灭火技术[J].劳动保护,2019(5):76-78.
[9] AN W G,XU W S,LIU F K,et al.Influence of different state of charge on fire characteristics of single 32 650lithium-ion battery in long-narrow confined space[J].Journal of Thermal Analysis and Calorimetry,2023,148(14):7047-7058.
[10]李毓烜,阚强,崔海浩.储能系统用三元锂离子电池热失控火灾特性[J].电源技术,2023,47(3):328-331.
[11] EGELHAAF M,KRESS D,WOLPERT D,et al.Fire fighting of Li-ion traction batteries[J]. SAE International Journal of Alternative Powertrains,2013,2(1):37-48.
[12] SUMMER S M. Flammability assessment of lithium-ion and lithium-ion polymer battery cells designed for aircraft power usage[M]. US Department of Transportation,Federal Aviation Administration, 2010.
[13] MALONEY T. Extinguishment of lithium-ion and lithium-metal battery fires[M]. US Department of Transportation, Federal Aviation Administration, 2014.
[14] LIANG C,JIN K Q,LIU P J,et al.The efficiency of perfluorohexanone on suppressing lithium-ion battery fire and its device development[J].Fire Technology,2023,59(3):1283-1301.
[15]韩路豪,王子阳,何骁龙,等.细水雾释放策略对大容量三元锂离子电池热失控火灾抑制效果的实验研究[J].储能科学与技术,2023,12(5):1664-1674.
[16]张林,汪书苹,许佳佳,等.不同灭火剂抑制锂离子电池热失控传播试验研究[J].安全与环境学报,2024,24(7):2585-2592.
[17]尹怡璇,杨克,纪虹,等.HFO-1234ze(E)对庚烷火焰抑制作用研究[J].消防科学与技术,2023,42(9):1192-1196.
基本信息:
DOI:10.19996/j.cnki.ChinBatlnd.2025.02.003
中图分类号:X932;TM912
引用信息:
[1]张磊,黄昊,马天翼等.磷酸铁锂储能模组燃烧特性及灭火剂抑制效果研究[J].电池工业,2025,29(02):102-109+121.DOI:10.19996/j.cnki.ChinBatlnd.2025.02.003.
基金信息:
国家重点研发计划项目(2023YFC3009900); 中央基本科研业务费项目(25SX00)