安徽艾克瑞德科技有限公司;安徽建筑大学材料与化学工程学院;
为阐述“铅碳电池”研究领域理论实践发展轨迹,揭示研究领域的热点问题与前沿趋势。本文运用CiteSpace V软件绘制可视化知识图谱,对中国知网数据库中2003—2023年的200篇相关文献进行分析。研究结果表明“铅碳电池”研究领域相关论文数量呈逐年增加趋势,论文作者主要集中在少数高校和电池企业,校企合作并不密切,并未形成一个大研究团体。“铅酸蓄电池”“碳材料”“铅碳电池”等热点词紧密度较高,铅酸蓄电池在不断向铅碳电池发展。从时间线中可以看出近年来研究热点逐渐分化出燃料电池、磷酸铁锂电池、超级电容器等方向,可以推测碳材料的选择与改性、析氢缺陷的改良可能成为下一个研究热点。
236 | 0 | 4 |
下载次数 | 被引频次 | 阅读次数 |
[2] DURSUN B,ALBOYACI B. The contribution of wind-hydro pumped storage systems in meeting Turkey’s electric energy demand[J].Renewable and Sustainable Energy Reviews,2010,14(7):1979-1988.
[3] WU S M,FANG G Y,CHEN Z.Discharging characteristics modeling of cool thermal energy storage system with coil pipes using n-tetradecane as phase change material[J]. Applied Thermal Engineering,2012,37:336-343.
[4] BERNDT D. Valve-regulated lead-acid batteries[J].Journal of Power Sources,2001,100(1/2):29-46.
[5] BA?A P,MICKA K,K?IVíK P,et al. Study of the influence of carbon on the negative lead-acid battery electrodes[J]. Journal of Power Sources,2011,196(8):3988-3992.
[6] LAM L T,HAIGH N P,PHYLAND C G,et al.Failure mode of valve-regulated lead-acid batteries under high-rate partial-state-of-charge operation[J]. Journal of Power Sources,2004,133(1):126-134.
[7] PAVLOV D,ROGACHEV T,NIKOLOV P,et al.Mechanism of action of electrochemically active carbons on the processes that take place at the negative plates of lead-acid batteries[J].Journal of Power Sources,2009,191(1):58-75.
[8] PAVLOV D,NIKOLOV P,ROGACHEV T. Influence of expander components on the processes at the negative plates of lead-acid cells on high-rate partialstate-of-charge cycling. Part II. Effect of carbon additives on the processes of charge and discharge of negative plates[J]. Journal of Power Sources,2010,195(14):4444-4457.
[9] PAVLOV D,NIKOLOV P,ROGACHEV T. Influence of carbons on the structure of the negative active material of lead-acid batteries and on battery performance[J]. Journal of Power Sources,2011,196(11):5155-5167.
[10] PAVLOV D,NIKOLOV P.Capacitive carbon and electrochemical lead electrode systems at the negative plates of lead-acid batteries and elementary processes on cycling[J].Journal of Power Sources,2013,242:380-399.
[11] HONG B,YU X Y,JIANG L X,et al.Hydrogen evolution inhibition with diethylenetriamine modification of activated carbon for a lead-acid battery[J]. RSC Advances,2014,4(63):33574-33577.
[12] DU W,WANG X N,SUN X Q,et al.Nitrogen-doped hierarchical porous carbon using biomass-derived activated carbon/carbonized polyaniline composites for supercapacitor electrodes[J]. Journal of Electroanalytical Chemistry,2018,827:213-220.
[13] K?IVíK P,MICKA K,BA?A P,et al.Effect of additives on the performance of negative lead-acid battery electrodes during formation and partial state of charge operation[J]. Journal of Power Sources,2012,209:15-19.
[14] MOSELEY P T,NELSON R F,HOLLENKAMP A F. The role of carbon in valve-regulated lead-acid battery technology[J].Journal of Power Sources,2006,157(1):3-10.
[15] RACHMAN L M, HAZRA F, BASKORO D P T, et al. Improvement of suboptimal soil productivity to growth and production of groundnut(Arachis hypogea L.)[J]. IOP Conference Series:Earth and Environmental Science, 2021, 807(4):042072.
[16] NAKAMURA K,SHIOMI M,TAKAHASHI K,et al.Failure modes of valve-regulated lead/acid batteries[J].Journal of Power Sources,1996,59(1/2):153-157.
[17] CHEN Y,CHEN B Z,MA L W,et al. Influence of pitch-based carbon foam current collectors on the electrochemical properties of lead acid battery negative electrodes[J].Journal of Applied Electrochemistry,2008,38(10):1409-1413.
[18] LAM L T,LOUEY R,HAIGH N P,et al. VRLA Ultrabattery for high-rate partial-state-of-charge operation[J]. Journal of Power Sources,2007,174(1):16-29.
[19] WANG H,SHAO Y,MEI S L,et al.Polymer-derived heteroatom-doped porous carbon materials[J]. Chemical Reviews,2020,120(17):9363-9419.
[20] LI X,TANG Y,SONG J H,et al.Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor[J].Carbon,2018,129:236-244.
[21] LAM L T,HAIGH N P,PHYLAND C G,et al.Novel technique to ensure battery reliability in 42-V PowerNets for new-generation automobiles[J]. Journal of Power Sources,2005,144(2):552-559.
[22] LAM L T,LOUEY R. Development of ultra-battery for hybrid-electric vehicle applications[J]. Journal of Power Sources,2006,158(2):1140-1148.
[23] BODEN D P,LOOSEMORE D V,SPENCE M A,et al. Optimization studies of carbon additives to negative active material for the purpose of extending the life of VRLA batteries in high-rate partial-state-of-charge operation[J].Journal of Power Sources,2010,195(14):4470-4493.
[24] MOSELEY P T, NELSON R F, HOLLENKAMP A F. The role of carbon in valve-regulated lead-acid battery technology[J]. Journal of Power Sources, 2006, 157(1):3-10.
[25] SARAVANAN M,GANESAN M,AMBALAVANAN S.An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery[J].Journal of Power Sources,2014,251:20-29.
[26] YOLSHINA L A,YOLSHINA V A,YOLSHIN A N,et al. Novel lead-graphene and lead-graphite metallic composite materials for possible applications as positive electrode grid in lead-acid battery[J].Journal of Power Sources,2015,278:87-97.
[27] XIANG J Y,DING P,ZHANG H,et al. Beneficial effects of activated carbon additives on the performance of negative lead-acid battery electrode for high-rate partial-state-of-charge operation[J]. Journal of Power Sources,2013,241:150-158.
[28] BAO J P,LIN N,DAN Y Y,et al. Anodic coelectrodeposition of hierarchical porous nano-SiO2+PbO2 composite for enhanced performance of advanced lead-carbon batteries[J]. Journal of Energy Storage,2021,35:102285.
[29] YIN J,LIN N,LIN Z Q,et al. Towards renewable energy storage:Understanding the roles of rice huskbased hierarchical porous carbon in the negative electrode of lead-carbon battery[J]. Journal of Energy Storage,2019,24:100756.
[30] HU C K,LI J M,LI Q,et al.Rapid preparation of nano lead sulfate-lead carbon black composite by microwave method as a negative electrode additive for lead-carbon batteries[J].Electrochimica Acta,2021,384:138411.
[31] SHIOMI M,FUNATO T,NAKAMURA K,et al.Effects of carbon in negative plates on cycle-life performance of valve-regulated lead/acid batteries[J].Journal of Power Sources,1997,64(1/2):147-152.
[32] OHMAE T,HAYASHI T,INOUE N. Development of 36-V valve-regulated lead-acid battery[J].Journal of Power Sources,2003,116(1/2):105-109.
[33] MOSELEY P T. Consequences of including carbon in the negative plates of valve-regulated lead-Acid batteries exposed to high-rate partial-state-of-charge operation[J].Journal of Power Sources,2009,191(1):134-138.
[34] KOZAWA A,OHO H,SANO M,et al. Beneficial effect of carbon-PVA colloid additives for lead-acid batteries[J]. Journal of Power Sources,1999,80(1/2):12-16.
[35] DING L B,HE S Y,MIN Q W. Metrological and visual analysis of meta-analysis related literature in Ecology by CiteSpace application[J].Acta Ecologica Sinica,2019,39(24):131-149.
[36]李煜.基于CSSCI数据的近十年用户体验研究的可视化分析[J].智库时代,2019, 204(36):167-168.
[37]刘岩,尹艳萍,黄倩,等.我国新能源汽车动力电池安全现状分析与探讨[J].电池工业,2022,26(6):309-312+320.
[38] ARUN S,KIRAN K U V,KUMAR S M,et al.Effect of orange peel derived activated carbon as a negative additive for lead-acid battery under high rate discharge condition[J].Journal of Energy Storage,2021,34:102225.
[39] BLECUA M,FATAS E,OCON P,et al.Graphitized carbon nanofibers:New additive for the negative active material of lead acid batteries[J].Electrochimica Acta,2017,257:109-117.
[40] BLECUA M,FATAS E,OCON P,et al.Influences of carbon materials and lignosulfonates in the negative active material of lead-acid batteries for microhybrid vehicles[J]. Journal of Energy Storage,2017,11:55-63.
[41] BLECUA M,ROMERO A F,OCON P,et al.Improvement of the lead acid battery performance by the addition of graphitized carbon nanofibers together with a mix of organic expanders in the negative active material[J].Journal of Energy Storage,2019,23:106-115.
[42] DEYAB M A.Hydrogen evolution inhibition byl-serine at the negative electrode of a lead-acid battery[J].RSC Advances,2015,5(52):41365-41371.
[43] DEYAB M A.Ionic liquid as an electrolyte additive for high performance lead-acid batteries[J]. Journal of Power Sources,2018,390:176-180.
[44] CAI W J,QI K,CHEN Z Y,et al.Effect of graphene oxide with different oxygenated groups on the high-rate partial-state-of-charge performance of lead-acid batteries[J].Journal of Energy Storage,2018,18:414-420.
[45] CHEN C W,LIU Y C,CHEN Y Q,et al. Effect of polyaniline-modified lignosulfonate added to the negative active material on the performance of lead-acid battery[J].Electrochimica Acta,2020,338:135859.
[46] DONG L,CHEN C H,WANG J J,et al.Acid-treated multi-walled carbon nanotubes as additives for negative active materials to improve high-rate-partial-state-ofcharge cycle-life of lead-acid batteries[J]. RSC Advances,2021,11(25):15273-15283.
[47] ZHAO L,CHEN B S,WU J Z,et al.Study of electrochemically active carbon,Ga2O3 and Bi2O3 as negative additives for valve-regulated lead-acid batteries working under high-rate,partial-state-of-charge conditions[J].Journal of Power Sources,2014,248:1-5.
[48]陈则胜,刘峥,艾慧婷,等.炭热原位合成In2O3(Bi2O3)/剑麻纤维基碳复合材料及在铅碳电池中的应用研究[J].稀有金属材料与工程,2020,49(10):3612-3619.
[49]陈则胜,刘峥,艾慧婷,等.ZnO/剑麻纤维基碳复合材料制备及性能研究[J].电源技术,2020,44(6):855-859,866.
[50]梁秋群,刘峥,艾慧婷,等.基于油茶果壳的C/ZnO复合材料制备及其在铅碳电池中的应用[J].化工学报,2020,71(5):2292-2304.
[51]周建峰,董劲,潘明熙,等.铅酸蓄电池板栅材料研究新进展[J].通信电源技术,2020,37(7):120-125.
[52]于锦昭,柯昌美,杨金堂,等.酚醛树脂为碳源制备铅碳电池负极材料的研究[J].现代化工,2020,40(4):148-152.
[53]于锦昭,柯昌美,杨金堂,等.乙二醇为碳源制备铅碳电池负极材料[J].无机盐工业,2019,51(4):27-31.
[54]陈梅,柯昌美,邱德芬,等.淀粉为碳源制备铅碳电池负极材料的研究[J].现代化工,2017,37(12):135-138.
[55]黄伟国,刘孝伟,陈理,等.铅膏和制方法对铅碳负极性能的影响[J].蓄电池,2020,57(2):51-55,62.
[56]黄伟国,陈理,刘孝伟,等.铅碳负极中铅在碳表面的电沉积研究[J].电源技术,2019,43(8):1340-1343.
[57] LIU D C,ZHANG W L,LIN H B,et al.A green technology for the preparation of high capacitance rice huskbased activated carbon[J]. Journal of Cleaner Production,2016,112:1190-1198.
[58] ZHANG W L,LIN H B,LIN Z Q,et al.3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method[J]. ChemSusChem,2015,8(12):2114-2122.
[59] GAO Y, VOLKER P, LIN H B, et al. High power supercapacitor electrodes based on flexible TiC-CDC nano-felts.[J]. Journal of Power Sources,2012,201:368-375.
[60] ZOU X P,KANG Z X,SHU D,et al.Effects of carbon additives on the performance of negative electrode of lead-carbon battery[J].Electrochimica Acta,2015,151:89-98.
[61] TONG P Y,ZHAO R R,ZHANG R B,et al.Characterization of lead (Ⅱ)-containing activated carbon and its excellent performance of extending lead-acid battery cycle life for high-rate partial-state-of-charge operation[J].Journal of Power Sources,2015,286:91-102.
[62]刘璐,刘丽坤,陈志雪,等.对几种锡含量不同的铅酸蓄电池正极板栅析氧行为的探究[J].蓄电池,2014,51(2):60-63.
[63]邹智敏,刘旭东,曹小明,等.铅酸蓄电池镀铅泡沫碳化硅正极集流体的性能[J].材料研究学报,2004,18(6):635-640.
[64]高根芳,朱健,代飞,等.Ti4O7正极添加剂在铅酸蓄电池中的应用[J].蓄电池,2015,52(2):59-61,74.
[65]陈飞,邓继东,张慧.亚氧化钛作为正极添加剂对极板及电池性能的影响[J].蓄电池,2015,52(6):278-282.
基本信息:
DOI:10.19996/j.cnki.ChinBatlnd.2025.01.009
中图分类号:G353.1;TM912
引用信息:
[1]杨少华,张梦,方亮等.基于“CiteSpace”的铅碳电池发展规律的可视化分析[J].电池工业,2025,29(01):43-52.DOI:10.19996/j.cnki.ChinBatlnd.2025.01.009.
基金信息:
安徽省高校科技成果转化重点项目(2024AH060001); 国家自然科学基金资助项目(42277075); 国家重点研发计划项目(2021YFC3201005,2023YFC3205705); 安徽省高校协同创新项目(GXXT-2023-049); 安徽省教育厅高校自然科学研究项目(KJ2018ZD049)