1,741 | 0 | 197 |
下载次数 | 被引频次 | 阅读次数 |
近年来,锂离子动力电池在安全性、充电速度、续航里程和使用寿命等方面取得了显著进展,这很大程度上促进了新能源汽车的发展,而这些方面的进展都离不开热管理技术的革新。锂离子动力电池在高低温状态下由热管理系统对其进行冷却或加热,使其在适宜的温度范围内充放电,这不仅能够消除充放电过程中产生的热量堆积,还能够防止低温充电时析锂造成的安全风险,同时也能够缩短充电时间、提高续航里程、延长使用寿命。本文综述了锂离子动力电池的多种热管理技术,包括风冷、液冷、相变材料换热等,并分析了其优缺点,为未来热管理技术的研究提供参考。
Abstract:In recent years, significant breakthroughs have been achieved in aspects such as the safety,charging time, cruising range, and service life of lithium-ion power batteries. This has greatly promoted the development of new energy vehicles, and these breakthroughs are inseparable from the innovation of lithium-ion power battery thermal management technology. Under high and low temperature conditions, the thermal management system cools or heats the lithium-ion power battery,enabling it to charge and discharge within an appropriate temperature range. This not only eliminates the heat accumulation generated during the charging and discharging process of the lithium-ion power battery, but also prevents the safety risks caused by lithium plating during charging at low temperatures. At the same time, it can shorten the charging time, increase the cruising range, and extend the service life. This paper reviews various thermal management technologies for lithium-ion power batteries, including air cooling, liquid cooling, heat transfer using phase-change materials,etc., and analyzes their advantages and disadvantages, providing a reference for future research on thermal management technologies.
[1]安飒,廉小亲,成开元,等.基于OpenMV的无人驾驶智能小车模拟系统[J].信息技术与信息化,2019(6):16-20.
[2]张照普.锂离子动力电池低温特性与整车热管理系统协同控制研究[D].长春:吉林大学,2022.
[3]张松林,符兴锋,曾雷.动力电池低温特性对电动汽车性能影响分析[J].机电工程技术,2020,49(7):59-60,128.
[4]纪柯.温度对电动汽车用磷酸铁锂电池充放电循环性能影响[J].金属功能材料,2024,31(4):54-61.
[5]孙权.快速充电过程锂离子动力电池热效应研究[D].洛阳:河南科技大学,2023.
[6]李丽丽,夏弋茹,杨振,等.纯电动汽车锂离子电池低温充电方法对温升速率的影响分析[J].汽车文摘,2024(5):6-10.
[7]林树潮,胡宝林.新能源汽车动力电池热失控分析[J].汽车与新动力,2024,7(4):32-34.
[8] BITZER B,GRUHLE A.A new method for detecting lithium plating by measuring the cell thickness[J].Journal of Power Sources,2014,262:297-302.
[9]王邱宇.电动飞机电池微小通道风冷散热特性研究[D].绵阳:西南科技大学,2024.
[10]付波,段会强,金积德.一种基于风冷系统的新型汽车动力电池散热模组设计[J].电子器件,2023,46(3):731-738.
[11]王天波,陈茜,张兰春,等.电动汽车锂离子电池风冷散热结构优化设计[J].电源技术,2020,44(3):371-376.
[12]蔡天鏖,沈雪阳,贺春敏,等.动力锂离子电池热行为研究与风冷散热优化设计[J].电源技术,2023,47(2):187-192.
[13]田川.动力电池模组风冷散热性能研究[D].昆明:昆明理工大学,2022.
[14]赖玉军.新能源汽车动力电池低温加热技术对比分析[J].汽车与新动力,2024,7(4):51-55.
[15]刘存山,张红伟.汽车动力电池低温加热方法研究[J].电源技术,2015,39(8):1645-1647,1701.
[16]张红松,邓辉龙,王淮阳,等.无模组动力电池包设计及其冷却性能分析[J].安徽工程大学学报,2024,39(5):17-25.
[17]范蓉蓉,李文浩,刘志恩,等.基于Isight的动力电池液冷板流道结构优化设计[J].江苏大学学报(自然科学版),2024,45(6):660-665,731.
[18]肖立辉,李湘怡,管雨豪,等.汽车动力电池液冷板流道设计与散热研究[J].内燃机与配件,2024(20):12-14.
[19] AFSHARI E,ZIAEI-RAD M,DEHKORDI M M.Numerical investigation on a novel zigzag-shaped flow channel design for cooling plates of PEM fuel cells[J].Journal of the Energy Institute,2017,90(5):752-763.
[20]阙雨晨.锂离子动力电池液冷散热系统优化设计研究[D].重庆:重庆交通大学,2024.
[21]安燃.低温环境下动力电池组预热系统研究[D].重庆:重庆理工大学,2024.
[22]闫云敬.汽车动力电池组热特性及散热结构优化研究[J].内燃机与配件,2022(6):197-199.
[23]冯燕燕,何煜,黄文姣,等.耦合乘员舱空调的电池直冷热管理系统高温快充控制策略分析[J].汽车工程师,2024(11):7-12.
[24]宋旭,孙楠楠,曹恒超,等.基于并联蛇形流道的动力电池冷媒直冷热管理系统研究[J].储能科学与技术,2024,13(8):2726-2736.
[25]撒朗.高性能电动车直冷式热管理系统及其控制策略研究[D].长春:吉林大学,2024.
[26]单春贤,杨鹏,唐爱坤,等.电动汽车电池组冷媒直冷系统工作特性的试验[J].江苏大学学报(自然科学版),2024,45(1):30-37.
[27]王芳,夏军.电动汽车动力电池系统设计与制造技术[M].北京:科学出版社,2017.
[28]何宇.新能源汽车动力电池冷却技术研究综述[J].汽车文摘,2024(10):9-13.
[29]李航,谢欣辰.使用柔性定型相变材料进行动力电池热管理的实验研究[J].电子测试,2023(5):33-39.
[30] VERMA A,SHASHIDHARA S,RAKSHIT D. A comparative study on battery thermal management using phase change material(PCM)[J].Thermal Science and Engineering Progress,2019,11:74-83.
[31] MEHRALI M,LATIBARI S T,MEHRALI M,et al.Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite[J].Energy Conversion and Management,2013,67:275-282.
[32] KANG W,ZHAO Y Q,JIA X H,et al.Paraffin/SiC as a novel composite phase-change material for a lithiumion battery thermal management system[J]. Transactions of Tianjin University,2021,27(1):55-63.
[33]张计军,葛家琪,潘汉平,等.新能源汽车动力电池散热技术综述[J].时代汽车,2023(24):122-124.
[34]朱剑杰,庄园,欧阳洪生,等.浸没液体冷却技术在动力电池热管理中的应用研究进展[J/OL].制冷学报,2024:1-18(2024-08-27)[2025-01-18]. https://kns.cnki.net/kcms/detail/11.2182.TB.20240826.1135.002.html.
[35] WANG Y F,WU J T. Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles[J].Energy Conversion and Management,2020,207:112569.
[36] GOODARZI M,JANNESARI H,AMERI M.Experimental study of Li-ion battery thermal management based on the liquid-vapor phase change in direct contact with the cells[J].Journal of Energy Storage,2023,62:106834.
[37] LIU Q,SUN C,ZHANG J S,et al.The electro-thermal equalization behaviors of battery modules with immersion cooling[J].Applied Energy,2023,351:121826.
[38]毛敬波.锂离子电池浸没式液体热管理系统研究[D].重庆:重庆理工大学,2024.
[39]周海洋,张振东,盛雷,等.储能用锂电池浸没式热性能调控仿真及热安全实验研究[J/OL].储能科学与技术,1-11[2025-01-18].https://doi.org/10.19799/j.cnki.2095-4239.2024.1056.
[40] WANG Y B,RAO Z,LIU S C,et al. Evaluating the performance of liquid immersing preheating system for Lithium-ion battery pack[J]. Applied Thermal Engineering,2021,190:116811.
[41]陈杰,牛雅恒,陈俊玄,等.锂离子电池浸没式热管理技术方案研究[J].现代机械,2024(5):64-70.
[42]刘钦.纹波电流加热技术及对新能源汽车性能的影响[J].汽车与新动力,2023,6(3):35-37.
[43]李豪.高频纹波电流激励下锂离子电池特性研究[D].北京:北京交通大学,2023.
[44] UNO M,TANAKA K. Influence of high-frequency charge–discharge cycling induced by cell voltage equalizers on the life performance of lithium-ion cells[J].IEEE Transactions on Vehicular Technology,2011,60(4):1505-1515.
[45] GHASSEMI A,CHAKRABORTY BANERJEE P,HOLLENKAMP A F,et al.Effects of alternating current on Li-ion battery performance:Monitoring degradative processes with in situ characterization techniques[J].Applied Energy,2021,284:116192.
[46]易孟斐.复合式锂离子电池热管理系统的设计与研究[D].重庆:重庆交通大学,2022.
[47]赵烽.基于相变材料与液体的复合式锂电池热管理系统研究[D].南昌:南昌大学,2021.
[48]彭波.电动汽车用锂离子电池组风冷-热管复合式散热性能研究[D].南京:南京师范大学,2017.
基本信息:
DOI:10.19996/j.cnki.ChinBatlnd.2025.02.001
中图分类号:TM912
引用信息:
[1]李海强,常宏,马天翼.锂离子动力电池热管理技术分析[J].电池工业,2025,29(02):77-86.DOI:10.19996/j.cnki.ChinBatlnd.2025.02.001.
基金信息:
国家重点研发计划(2022YFE0207300); 天津市科技项目(24ZYJDSS00140); 天津市科技人才项目(QN20230201)