nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg qikanlogo popupnotification paper
2024 05 v.28 251-257
超高镍正极材料空气稳定性研究及其电化学性能
基金项目(Foundation):
邮箱(Email): wczhu@suda.edu.cn;
DOI: 10.19996/j.cnki.ChinBatlnd.2024.05.005
中文作者单位:

苏州农业职业技术学院;苏州大学功能纳米与软物质研究院;

摘要(Abstract):

超高镍氧化物被认为是锂离子动力电池的首选正极材料,但是其在空气中的存储稳定性较差,严重影响了实际应用。本文研究了LiNi_(0.95)Co_(0.025)Mn_(0.025)O_2(NCM)材料暴露在空气中的稳定性及其对电化学储锂性能的影响,进一步探索了超高镍正极材料颗粒表面残留碱性物质(残碱)随时间变化的形成机制。材料表征结果表明,超高镍材料在短时间内暴露于空气时,其表面形成孤岛状的残碱,且这些残碱颗粒的尺寸随着暴露时间的延长而增大。电化学交流阻抗谱(EIS)和微分容量曲线(dQ/dV)测试结果表明,残碱的形成显著增加了NCM正极材料的电化学阻抗,加剧了超高镍正极材料储锂循环中的不可逆相变和结构退化,从而影响了放电容量和循环寿命。在2.7~4.3 V(vs.Li~+/Li)的工作电压和0.5 C电流密度下,未暴露空气的初始NCM正极材料的首圈放电比容量为208.1 mAh/g,循环200圈后容量保持率为70.7%,而在空气中暴露12 h和14天后的NCM材料的首圈放电比容量分别为202.9 mAh/g和171.8 mAh/g,循环200圈后的容量保持率仅有60.1%和53.1%。

关键词(KeyWords): 超高镍正极材料;空气稳定性;残碱物质;锂离子电池
参考文献 [1] XU J J,CAI X Y,CAI S M,et al.High-energy lithiumion batteries:Recent progress and a promising future in applications[J]. Energy&Environmental Materials,2023,6(5):e12450.
[2] WANG Y J,ZHANG X C,LI K Q,et al.Perspectives and challenges for future lithium-ion battery control and management[J].eTransportation,2023,18:100260.
[3] ZHU W C,ZHU X T,QI J Z,et al.Stabilizing high-Ni cathodes with gradient surface Ti-enrichment[J].Chemical Engineering Journal,2024,489:151208.
[4] LU J Y,XU C,DOSE W,et al.Microstructures of layered Ni-rich cathodes for lithium-ion batteries[J].Chemical Society Reviews,2024,53(9):4707-4740.
[5] YU H F,CHENG J,ZHU H W,et al.Reversible configurations of 3-coordinate and 4-coordinate boron stabilize ultrahigh-Ni cathodes with superior cycling stability for practical Li-ion batteries[J]. Advanced Materials,2024:2412360.
[6] PARK N Y,PARK G T,KIM S B,et al.Degradation mechanism of Ni-rich cathode materials:Focusing on particle interior[J].ACS Energy Letters,2022,7(7):2362-2369.
[7] ZHAO J Q,ZHANG W,HUQ A,et al.In situ probing and synthetic control of cationic ordering in Ni-rich layered oxide cathodes[J]. Advanced Energy Materials,2017,7(3):1601266.
[8] CUI Z H,ZUO P,GUO Z Z,et al.Formation and detriments of residual alkaline compounds on high-nickel layered oxide cathodes[J]. Advanced Materials,2024,36(33):2402420.
[9] RYU H H,LIM H W,LEE S G,et al. Near-surface reconstruction in Ni-rich layered cathodes for highperformance lithium-ion batteries[J]. Nature Energy,2023,9(1):47-56.
[10] JO C H,CHO D H,NOH H J,et al. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer[J].Nano Research,2015,8(5):1464-1479.
[11] FAENZA N V,BRUCE L,LEBENS-HIGGINS Z W,et al. Editors'choice—Growth of ambient induced surface impurity species on layered positive electrode materials and impact on electrochemical performance[J].Journal of the Electrochemical Society,2017,164(14):A3727-A3741.
[12] SEONG W M,CHO K H,PARK J W,et al.Controlling residual lithium in high-nickel(>90%)lithium layered oxides for cathodes in lithium-ion batteries[J].Angewandte Chemie(International Ed. in English),2020,59(42):18662-18669.
[13] SEONG W M,KIM Y,MANTHIRAM A. Impact of residual lithium on the adoption of high-nickel layered oxide cathodes for lithium-ion batteries[J].Chemistry of Materials,2020,32(22):9479-9489.
[14] YOU Y,CELIO H,LI J Y,et al.Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries[J].Angewandte Chemie(International Ed.in English),2018,57(22):6480-6485.
[15] CHO D H,JO C H,CHO W,et al. Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2[J].Journal of the Electrochemical Society,2014,161(6):A920-A926.

基本信息:

DOI:10.19996/j.cnki.ChinBatlnd.2024.05.005

中图分类号:O646;TM912

引用信息:

[1]余雁,朱文昌,黄超群等.超高镍正极材料空气稳定性研究及其电化学性能[J].电池工业,2024,28(05):251-257.DOI:10.19996/j.cnki.ChinBatlnd.2024.05.005.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文