nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 03, v.28 121-131
PVDF基聚合物固态电解质的组成与改性研究
基金项目(Foundation): 国家自然科学基金项目(U2001220和52203298)
邮箱(Email): he.yanbing@sz.tsinghua.edu.cn;
DOI: 10.19996/j.cnki.ChinBatlnd.2024.03.002
摘要:

固态锂电池因其具备高能量密度、安全性好等优点而备受关注。作为固态锂电池最关键的组成部分,固态电解质(SSE)在提高固态锂电池的电化学性能方面起到至关重要的作用。聚偏二氟乙烯(PVDF)基固态聚合物电解质(SPE)具有优异的柔韧性、力学性能以及良好的加工性能,在固态锂电池的发展中展现出巨大的应用潜力。然而,PVDF基SPE仍存在离子电导率低、结晶度高等问题。本文基于SPE的离子传输机制和目前存在的缺点,详细介绍了PVDF基SPE设计策略的最新进展,重点总结了在有机分子改性、填料的设计与改性和结构调控等方面的研究进展。此外,本文介绍了PVDF基SSE在固态锂电池体系中的应用。最后,对PVDF基SPE的未来前景进行了展望。

Abstract:

Solid-state lithium batteries have attracted much attention due to their high energy density and improved safety property.As the most critical component of SSLBs, the solid-state electrolyte(SSE) has a crucial role in the improvement of the electrochemical performance of SSLBs.Polyvinylidene fluoride(PVDF) solid polymer electrolytes(SPEs),which have excellent flexibility, mechanical properties, and processing characteristics, show great potential in developing lithium solid-state batteries.However, PVDF-based SPEs still face problems such as low ionic conductivity and high crystallinity.In this paper, based on the ion transport mechanism and the current drawbacks of SPEs, the recent advances in the design strategies of PVDF-based SPEs, such as organic molecule modification and the design and modification of fillers, are reviewed in detail.In addition, this paper describes the application of PVDF-based SPEs in lithium solid-state battery systems.Finally, this review proposes future strategies for the development of PVDF-based high performance SPEs.

参考文献

[1] DUNN B,KAMATH H,TARASCON J M.Electrical energy storage for the grid:A battery of choices[J].Science,2011,334(6058):928-935.

[2] TARASCON J M,ARMAND M.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414(6861):359-367.

[3] CHOI N S,CHEN Z H,FREUNBERGER S A,et al.Challenges facing lithium batteries and electrical double-layer capacitors[J].Angewandte Chemie,2012,51(40):9994-10024.

[4] JANEK J,ZEIER W G.A solid future for battery development[J].Nature Energy,2016,1(9):16141.

[5] LóPEZ-ARANGUREN P,BERTI N,DAO A H,et al.An all-solid-state metal hydride-Sulfur lithium-ion battery[J].Journal of Power Sources,2017,357:56-60.

[6] XU W,WANG J L,DING F,et al.Lithium metal anodes for rechargeable batteries[J].Energy & Environmental Science,2014,7(2):513-537.

[7] QU X L,ZHANG X,GAO Y,et al.Remarkably improved cycling stability of boron-strengthened multicomponent layer protected micron-Si composite anode[J].ACS Sustainable Chemistry & Engineering,2019,7(23):19167-19175.

[8] SHI X,PANG Y,WANG B,et al.In situ forming LiF nanodecorated electrolyte/electrode interfaces for stable all-solid-state batteries[J].Materials Today Nano,2020,10:100079.

[9] KAMAYA N,HOMMA K,YAMAKAWA Y,et al.A lithium superionic conductor[J].Nature Materials,2011,10(9):682-686.

[10] SUN Y D,GUAN P Y,LIU Y J,et al.Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery[J].Critical Reviews in Solid State & Material Sciences,2019,44(4):265-282.

[11] HARADA Y,ISHIGAKI T,KAWAI H,et al.Lithium ion conductivity of polycrystalline perovskite La0.67-xLi3xTiO3 with ordered and disordered arrangements of the A-site ions[J].Solid State Ionics,1998,108(1/2/3/4):407-413.

[12] YU X H,BATES J B,JELLISON G E,et al.A stable thin-film lithium electrolyte:Lithium phosphorus oxynitride[J].Journal of the Electrochemical Society,1997,144(2):524-532.

[13] LIU F,HASHIM N A,LIU Y T,et al.Progress in the production and modification of PVDF membranes[J].Journal of Membrane Science,2011,375(1/2):1-27.

[14] KANG G D,CAO Y M.Application and modification of poly(vinylidene fluoride) (PVDF) membranes—A review[J].Journal of Membrane Science,2014,463:145-165.

[15] COSTA C M,CARDOSO V F,MARTINS P,et al.Smart and multifunctional materials based on electroactive Poly(vinylidene fluoride):Recent advances and opportunities in sensors,actuators,energy,environmental,and biomedical applications[J].Chemical Reviews,2023,123(19):11392-11487.

[16] ZHU L,WANG Q.Novel ferroelectric polymers for high energy density and low loss dielectrics[J].Macromolecules,2012,45(7):2937-2954.

[17] LIU Y,AN X F,YANG K,et al.Achieving a high loading of cathode in PVDF-based solid-state battery[J].Energy & Environmental Science,2024,17(1):344-353.

[18] LIU Q Y,YANG G J,LI X Y,et al.Polymer electrolytes based on interactions between[solvent-Li+]complex and solvent-modified polymer[J].Energy Storage Materials,2022,51:443-452.

[19] ZHANG Y F,ZHANG W,XIA J M,et al.Microwave-responsive flexible room-temperature phosphorescence materials based on poly(vinylidene fluoride) polymer[J].Angewandte Chemie International Edition,2023,62(50):2314273.

[20] LIU J F,WU Z Y,STADLER F J,et al.High dielectric poly(vinylidene fluoride)-based polymer enables uniform Lithium-ion transport in solid-state ionogel electrolytes[J].Angewandte Chemie International Edition,2023,62(26):2300243.

[21] LUO B,WU J T,ZHANG M,et al.Surface modification of garnet fillers with a polymeric sacrificial agent enables compatible interfaces of composite solid-state electrolytes[J].Chemical Science,2023,14(45):13067-13079.

[22] SAXENA P,SHUKLA P.A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF)[J].Advanced Composites and Hybrid Materials,2021,4(1):8-26.

[23] ZHANG B H,WU Y,HOU Y L,et al.Contributing to the revolution of electrolyte systems via in situ polymerization at different scales:A review[J].Small,2024,20(1):e2305322.

[24] ZHANG S J,LU Y,HE K W,et al.The plastic crystal composite polyacrylate polymer electrolyte with a semi-interpenetrating network structure for all-solid-state LIBs[J].New Journal of Chemistry,2022,46(45):21640-21647.

[25] HUANG Y F,GU T,RUI G C,et al.A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity[J].Energy & Environmental Science,2021,14(11):6021-6029.

[26] ZHANG W R,KOVERGA V,LIU S F,et al.Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries[J].Nature Energy,2024,9:386-400.

[27] TANG S,GUO W,FU Y Z.Advances in composite polymer electrolytes for lithium batteries and beyond[J].Advanced Energy Materials,2021,11(2):2000802.

[28] LIANG H M,WANG L,WANG A P,et al.Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries:A review[J].Nano-Micro Letters,2023,15(1):42.

[29] FURUKAWA H,CORDOVA K E,O’KEEFFE M,et al.The chemistry and applications of metal-organic frameworks[J].Science,2013,341(6149):1230444.

[30] WANG X B,ZHAO C R,LIU B X,et al.Creating edge sites within the 2D metal-organic framework boosts redox kinetics in lithium-sulfur batteries[J].Advanced Energy Materials,2022,12(42):2201960.

[31] HUANG W H,WANG S,ZHANG X X,et al.Universal F4-modified strategy on metal-organic framework to chemical stabilize PVDF-HFP as quasi-solid-state electrolyte[J].Advanced Materials,2023,35(52):e2310147.

[32] YUAN Y,CHEN L K,LI Y H,et al.Functional LiTaO3 filler with tandem conductivity and ferroelectricity for PVDF-based composite solid-state electrolyte[J].Energy Materials and Devices,2023,1(1):9370004.

[33] SHI P R,MA J B,LIU M,et al.A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J].Nature Nanotechnology,2023,18(6):602-610.

[34] WU L Q,LV H R,ZHANG R,et al.Ferroelectric BaTiO3 regulating the local electric field for interfacial stability in solid-state lithium metal batteries[J].ACS Nano,2024:498-509.

[35] ZHOU S Y,ZHONG S J,DONG Y F,et al.Composition and structure design of poly(vinylidene fluoride)-based solid polymer electrolytes for lithium batteries[J].Advanced Functional Materials,2023,33(20):2214432.

[36] YAO P C,ZHU B,ZHAI H W,et al.PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density[J].Nano Letters,2018,18(10):6113-6120.

[37] ZHU L,CHEN J C,WANG Y W,et al.Tunneling interpenetrative lithium ion conduction channels in polymer-in-ceramic composite solid electrolytes[J].Journal of the American Chemical Society,2024,146(10):6591-6603.

[38] MANTHIRAM A,FU Y Z,SU Y S.Challenges and prospects of lithium-sulfur batteries[J].Accounts of Chemical Research,2013,46(5):1125-1134.

[39] JING S H,SHEN H Q,HUANG Y T,et al.Toward the practical and scalable fabrication of sulfide-based all-solid-state batteries:Exploration of slurry process and performance enhancement via the addition of LiClO4[J].Advanced Functional Materials,2023,33(24):2214274.

[40] YU W,XUE C J,HU B K,et al.Oxygen-and dendrite-resistant ultra-dry polymer electrolytes for solid-state Li-O2batteries[J].Energy Storage Materials,2020,27:244-251.

[41] LIU K X,CHENG H,WANG Z Y,et al.A 3 μm-ultrathin hybrid electrolyte membrane with integrative architecture for all-solid-state lithium metal batteries[J].Advanced Energy Materials,2024,14(14):2303940.

[42] JIANG Y J,XU C,XU K,et al.Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes[J].Chemical Engineering Journal,2022,442:136245.

基本信息:

DOI:10.19996/j.cnki.ChinBatlnd.2024.03.002

中图分类号:TM912;O646

引用信息:

[1]张政,贾弼超,贺艳兵.PVDF基聚合物固态电解质的组成与改性研究[J].电池工业,2024,28(03):121-131.DOI:10.19996/j.cnki.ChinBatlnd.2024.03.002.

基金信息:

国家自然科学基金项目(U2001220和52203298)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文