2025 01 v.29 37-42
磷酸铁锂规模化生产设备及工艺流程
基金项目(Foundation):
邮箱(Email):
hexm@tsinghua.edu.cn;
DOI:
10.19996/j.cnki.ChinBatlnd.2025.01.008
中文作者单位:
常州百利锂电智慧工厂有限公司;清华大学核能与新能源技术研究院;海南大学材料科学与工程学院;
摘要(Abstract):
当前锂离子电池的市场规模快速扩大,对正极材料的需求激增,其中磷酸铁锂(LFP)被认为是当前最具性价比的正极材料。本文介绍了一种规模化生产LFP的固相烧结方法,重点阐述了工艺流程及所需设备,并对一些工艺细节进行了解释。此外,还对比了实验室制备与规模化生产之间的差异。本文旨在加深科研人员对锂离子电池产业化发展现状的了解,并为相关科学研究提供帮助和启发。
关键词(KeyWords):
锂离子电池;磷酸铁锂;工艺流程;设备
2,002 | 0 | 2 |
下载次数 | 被引频次 | 阅读次数 |
参考文献
[1] LIU C, NEALE Z G, CAO G. Understanding electrochemical potentials of cathode materials in rechargeable batteries[J]. Materiala Today, 2016, 19:109-123.
[2] MURDOCK B E, TOGHILL K E, TAPIA-RUIZ N.A perspective on the sustainability of cathode materials used in lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11:2102028.
[3] QIAN G, ZHANG J, CHU S-Q, et al. Understanding the mesoscale degradation in nickel-rich cathode materials through machine-learning-revealed strain–redox decoupling[J]. ACS Energy Letters, 2021, 6:687-693.
[4] FALLAH N, FITZPATRICK C. Is shifting from Liion NMC to LFP in EVs beneficial for second-life storages in electricity markets?[J]. Journal of Energy Storage, 2023, 68:107740.
[5] SATYAVANI T V S L, SRINIVAS KUMAR A,SUBBA RAO P S V. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries:A review[J]. Engineering Science and Technology, 2016, 19:178-188.
[6] CALDERóN C A, THOMAS J E, LENER G, et al.Electrochemical comparison of LiFePO4 synthesized by a solid-state method using either microwave heating or a tube furnace[J]. Journal of Applied Electrochemistry,2017, 47:1179-1188.
[7] LIU J, WANG Z, ZHANG G, et al. Size-controlled synthesis of LiFePO4/C composites as cathode materials for lithium ion batteries[J]. International Journal of Electrochemical Science, 2013, 8:2378-2387.
[8] XU Y, MAO J. Improve electrochemical performance of LiFePO4/C cathode by coating Ti2O3 through a facile route[J]. Ionics, 2015, 21:3159-3167.
[9] SUN Y, YUAN Y, LU L, et al. A comprehensive research on internal short circuits caused by copper particle contaminants on cathode in lithium-ion batteries[J].eTransportation, 2022, 13:100183.
[10] QIAO Y, PAN L, JIA P, et al. Effect of magnetic treatment on microstructure and cycle performance of LiFePO4/C cathode material[J]. Materials Letters,2014, 137:432-434.
[11] ISLAM M S, DRISCOLL D J, FISHER C A J, et al.Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material[J]. Chemistry Materials, 2005, 17:5085-5092.
[12] ZHAO Q F, YU Y H, OUYANG Q S, et al. Surface modification of LiFePO4 by coatings for improving of lithium-ion battery properties[J]. International Journal of Electrochemical Science, 2022, 17:221142.
[13] ZHOU D, QIU X, LIANG F, et al. Comparison of the effects of FePO4 and FePO4·2H2O as precursors on the electrochemical performances of LiFePO4/C[J]. Ceramics International, 2017, 43:13254-13263.
[14] XIN Y M, XU H Y, RUAN J H, et al. A review on application of LiFePO4 based composites as electrode materials for lithium ion batteries[J]. International Journal of Electrochemical Science, 2021, 16:210655.
[15] WANG M, XUE Y, ZHANG K, Et al. Synthesis of FePO4·2H2O nanoplates and their usage for fabricating superior high-rate performance LiFePO4[J]. Electrochimica Acta, 2011, 56:4294-4298.
[16] CAO J, LIU R, GUO H, et al. High-temperature solidphase synthesis of lithium iron phosphate using polyethylene glycol grafted carbon nanotubes as the carbon source for rate-type lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2022, 907:116049.
[2] MURDOCK B E, TOGHILL K E, TAPIA-RUIZ N.A perspective on the sustainability of cathode materials used in lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11:2102028.
[3] QIAN G, ZHANG J, CHU S-Q, et al. Understanding the mesoscale degradation in nickel-rich cathode materials through machine-learning-revealed strain–redox decoupling[J]. ACS Energy Letters, 2021, 6:687-693.
[4] FALLAH N, FITZPATRICK C. Is shifting from Liion NMC to LFP in EVs beneficial for second-life storages in electricity markets?[J]. Journal of Energy Storage, 2023, 68:107740.
[5] SATYAVANI T V S L, SRINIVAS KUMAR A,SUBBA RAO P S V. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries:A review[J]. Engineering Science and Technology, 2016, 19:178-188.
[6] CALDERóN C A, THOMAS J E, LENER G, et al.Electrochemical comparison of LiFePO4 synthesized by a solid-state method using either microwave heating or a tube furnace[J]. Journal of Applied Electrochemistry,2017, 47:1179-1188.
[7] LIU J, WANG Z, ZHANG G, et al. Size-controlled synthesis of LiFePO4/C composites as cathode materials for lithium ion batteries[J]. International Journal of Electrochemical Science, 2013, 8:2378-2387.
[8] XU Y, MAO J. Improve electrochemical performance of LiFePO4/C cathode by coating Ti2O3 through a facile route[J]. Ionics, 2015, 21:3159-3167.
[9] SUN Y, YUAN Y, LU L, et al. A comprehensive research on internal short circuits caused by copper particle contaminants on cathode in lithium-ion batteries[J].eTransportation, 2022, 13:100183.
[10] QIAO Y, PAN L, JIA P, et al. Effect of magnetic treatment on microstructure and cycle performance of LiFePO4/C cathode material[J]. Materials Letters,2014, 137:432-434.
[11] ISLAM M S, DRISCOLL D J, FISHER C A J, et al.Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material[J]. Chemistry Materials, 2005, 17:5085-5092.
[12] ZHAO Q F, YU Y H, OUYANG Q S, et al. Surface modification of LiFePO4 by coatings for improving of lithium-ion battery properties[J]. International Journal of Electrochemical Science, 2022, 17:221142.
[13] ZHOU D, QIU X, LIANG F, et al. Comparison of the effects of FePO4 and FePO4·2H2O as precursors on the electrochemical performances of LiFePO4/C[J]. Ceramics International, 2017, 43:13254-13263.
[14] XIN Y M, XU H Y, RUAN J H, et al. A review on application of LiFePO4 based composites as electrode materials for lithium ion batteries[J]. International Journal of Electrochemical Science, 2021, 16:210655.
[15] WANG M, XUE Y, ZHANG K, Et al. Synthesis of FePO4·2H2O nanoplates and their usage for fabricating superior high-rate performance LiFePO4[J]. Electrochimica Acta, 2011, 56:4294-4298.
[16] CAO J, LIU R, GUO H, et al. High-temperature solidphase synthesis of lithium iron phosphate using polyethylene glycol grafted carbon nanotubes as the carbon source for rate-type lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2022, 907:116049.
基本信息:
DOI:10.19996/j.cnki.ChinBatlnd.2025.01.008
中图分类号:TM912
引用信息:
[1]战令浩,王锦坤,谢乐琼等.磷酸铁锂规模化生产设备及工艺流程[J].电池工业,2025,29(01):37-42.DOI:10.19996/j.cnki.ChinBatlnd.2025.01.008.
基金信息: