nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.29 122-128
锂离子电池热滥用测试方法研究
基金项目(Foundation): 国家重点研发计划项目(2022YFE0207300); 天津市青年科技人才项目(24ZYJDSS00140)
邮箱(Email): liulei2013@catarc.ac.cn;
DOI: 10.19996/j.cnki.ChinBatlnd.2025.02.005
摘要:

本研究探讨了三元材料和磷酸铁锂(LFP)材料两种体系的锂离子电池在热箱加热及绝热条件下加热的热失控行为。在两种热滥用测试条件下,LFP电池相比三元电池表现出更好的热稳定性,且两种电池在两种实验工况下表现出了相同的热特性差异。实验发现,两种电池在绝热条件下触发热失控的时间远大于热箱的加热时间。相比于绝热条件,热箱条件下样品除自身产热外,还会受到外部高温环境的热量注入,导致样品总加热速率更高,内部化学反应更活跃,更容易触发热失控。因此三元样品和LFP样品在热箱条件下的热失控触发温度均低于绝热条件,同时达到热失控触发所用的时间更短。由于三元样品和LFP样品在两种热滥用工况下热失控触发前的孕育期不同,能量流失也不同,导致两种样品的热失控最高温度在两种热滥用工况下表现也不同。

Abstract:

This study examined the thermal runaway behavior of two types of lithium-ion batteries,ternary and lithium iron phosphate, under heated oven and adiabatic conditions. Under both thermal abuse testing conditions, the lithium iron phosphate battery demonstrated superior thermal stability compared to the ternary battery. Batteries of both material systems exhibited similar differences in thermal characteristics under the two experimental conditions. The time to trigger thermal runaway in both types of batteries under adiabatic heating conditions was significantly longer than that in the heated oven, and the overall heating rate in the oven was higher than that in adiabatic heating. In both experimental conditions, the initial stage involved heating the battery through stepwise temperature increases in the environment, resulting in similar failure temperatures under both conditions.Additionally, the thermal runaway temperature under adiabatic conditions was higher than that in the heated oven for both battery types. Regarding the maximum temperature during thermal runaway, the performance of the ternary and lithium iron phosphate batteries differed under the two thermal abuse conditions: the maximum thermal runaway temperature for the ternary battery was higher in the heated oven than in adiabatic heating, whereas the lithium iron phosphate battery showed the opposite trend.

参考文献

[1] WANG Q S,MAO B B,STOLIAROV S I,et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J].Progress in Energy and Combustion Science,2019,73:95-131.

[2] WANG H B,XU H,ZHAO Z Y,et al.An experimental analysis on thermal runaway and its propagation in Cell-to-Pack lithium-ion batteries[J].Applied Thermal Engineering,2022,211:118418.

[3]朱鸿章,吴传平,周天念,等.磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J].储能科学与技术,2022,11(1):201-210.

[4] CHEN Z Y,XIONG R,SUN F C. Research status and analysis for battery safety accidents in electric vehicles[J]. Journal of Mechanical Engineering,2019,55(24):93.

[5]刘承鑫,李梓衡,陈泽宇,等.储能锂离子电池高温诱发热失控特性研究[J].储能科学与技术,2024,13(7):2425-2431.

[6]杨智皋,顾正建,王宏伟.高温高湿环境下LiFePO4电池的热特性分析[J].当代化工,2022,51(9):2043-2047.

[7]孙健.受热对锂离子电池热安全性能的影响研究[D].德阳:中国民用航空飞行学院,2022.

[8]黄峥,秦鹏,石晗,等.过热条件下86 Ah磷酸铁锂电池热失控行为研究[J].高电压技术,2022,48(3):1185-1191.

[9]张磊,黄昊,张永丰,等.热电触发LFP锂离子电池热失控特性研究[J].消防科学与技术,2023,42(4):439-442.

[10]宋来丰,梅文昕,贾壮壮,等.绝热条件下280 Ah大型磷酸铁锂电池热失控特性分析[J].储能科学与技术,2022,11(8):2411-2417.

基本信息:

DOI:10.19996/j.cnki.ChinBatlnd.2025.02.005

中图分类号:TM912;TP274

引用信息:

[1]张晋杰,李丹华,姜成龙等.锂离子电池热滥用测试方法研究[J].电池工业,2025,29(02):122-128.DOI:10.19996/j.cnki.ChinBatlnd.2025.02.005.

基金信息:

国家重点研发计划项目(2022YFE0207300); 天津市青年科技人才项目(24ZYJDSS00140)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文