nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2021, 06, v.25 285-290
基于多物理场的PEMFC流场结构优化
基金项目(Foundation): 该项目由河北省高等学校科学技术研究项目(QN2019209); 河北大学实验室开放项目(sy202010);河北大学第三批“精品实验项目”(2021-BZ-JPSY23)资助
邮箱(Email):
DOI:
摘要:

PEMFC具有效率高、功率大、低工作温度、低噪声、清洁无污染等优点,极具发展前景。传统PEMFC双极板气体流场中存在气体分布不均匀、"水淹"等问题,因此流场结构优化设计对改善PEMFC性能具有十分重要的意义。为此,设计了3种不同流道数量的PEMFC蛇形流场,并利用COMSOL软件对模型进行多物理场仿真求解,研究了不同流道数量对流场的压力分布、氧气浓度分布、阴极电流密度分布以及气体扩散层中的水浓度分布等的影响规律。仿真结果表明:随着流道数量的增加,流场的进出口压降减小,促进了气体反应物沿流道方向的输送;氧气浓度分布更均匀,促使反应物参与的电化学反应更加充分;排水效果显著增强。

Abstract:

Proton exchange membrane fuel cell(PEMFC)has the characteristics of high efficiency,large power,low working temperature,low noise,clean and pollution-free,which has a bright future.The traditional gas flow field of bipolar plate has the shortcomings of uneven gas distribution,“water”and so on.Therefore,the optimization design of flow field structure can improve the performance of PEMFC obviously.First,three different serpentine flow field of PEMFC were designed in this paper.And then COMSOL software was applied to solve the more physical field problems.At last,the influences of different serpentine flow field on the stress distribution of the flow field and oxygen concentration distribution,the cathode current density distribution and the water in the GDL concentration distribution were analyzed.The simulation results show that the pressure drop between the inlet and outlet is decreased with the increasing of the number of flow passages,which can promote the transport of gas reactants along the flow passages;the distribution of oxygen concentration is more uniform,which makes the reactants participate in the electrochemical reaction more fully;drainage is also more effective.

参考文献

[1]徐达成,高怡晨,谢欢.氢燃料电池混合动力车制氢和充电技术的现状与展望[J].世界科技研究与发展,2020,42(5):483-492.

[2]中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[J].中国水利,2021(6):1-38.

[3]孟翔宇,顾阿伦,邬新国,等.中国氢能产业高质量发展前景[J].科技导报,2020,38(14):77-93.

[4]李争,张蕊,孙鹤旭,等.可再生能源多能互补制-储-运氢关键技术综述[J].电工技术学报,2021,36(3):446-462.

[5]陈振兴,郭树杰,胡科峰,等.燃料电池双极板流场及电堆结构研究现状[J].电池工业,2020,24(5):264-268+280.

[6]孟庆然.基于多物理场耦合的PEMFC气体扩散层与流场结构优化[D].吉林:吉林化工学院,2020.

[7]罗鑫.PEM燃料电池流场传质模拟分析[D].沈阳:沈阳建筑大学,2018.

[8] CHEN X,YU Z K,YANG C,et al.Performance Investigation on a Novel 3D Wave Flow Channel Design for PEMFC[J].International Journal of Hydrogen Energy,2020(57):1-13.

[9]鲁聪达,毛潘泽,文东辉,等.PEMFC树状分形流场传递过程的数值分析[J].电源技术,2016,40(3):565-568+665.

[10]刘莹,薛志超,张添昱,等.波形流道对高温PEMFC性能的影响[J].电池,2020,50(5):436-440.

[11]YAN X H,GUAN C,ZHANG Y,et al.Flow Field Design with 3D Geometry for Proton Exchange Membrane Fuel Cells[J].Applied Thermal Engineering,2019(147):1107-1114.

[12]MOHAMMEDI A,SAHLI Y,MOUSSA B H.3DInvestigation of the Channel Cross-section Configuration Effect on the Power Delivered by PEMFCs with Straight Channels[J].Fuel,2020(263):1-28.

[13]J.I.S.CHO,J.MARQUIS,P.TROGADAS,et al.Optimizing the Architecture of Lung-inspired Fuel Cells[J].Chemical Engineering Science,2020(215):1-40.

[14]张宁,张小娟.渐变型流场对PEMFC传质和性能的影响[J].电源技术,2017,41(3):395-398.

[15]焦魁,王博文,杜青,等.PEMFC水热管理[M].北京:科学出版社,2020.

[16]刘洪建.PEMFC水热管理及性能优化研究[D].济南:山东大学,2020.

[17]宋经辉.PEMFC新型流场结构水管理模拟研究[D].北京:北京化工大学,2020.

基本信息:

DOI:

中图分类号:TM911.4

引用信息:

[1]陈佳浩,苏丹丹,梁玉娇等.基于多物理场的PEMFC流场结构优化[J].电池工业,2021,25(06):285-290.

基金信息:

该项目由河北省高等学校科学技术研究项目(QN2019209); 河北大学实验室开放项目(sy202010);河北大学第三批“精品实验项目”(2021-BZ-JPSY23)资助

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文