271 | 0 | 40 |
下载次数 | 被引频次 | 阅读次数 |
富含镍的层状氧化物正极存在结构不稳定性等问题,特别是当镍含量(质量分数)超过90%时,其循环性能急剧恶化。为了解决高镍材料在长循环和大倍率下容量衰减的问题,本文以LiNi0.96Co0.03Mn0.01O2(NCM9631)正极材料为研究对象,对其进行包覆改性研究。使用原子层沉积技术对NCM9631进行包覆改性,其中具有TiO2涂层的T-NCM9631样品表现出良好的电化学性能。与原始材料相比,T-NCM9631的初始放电比容量从226 mAh/g提高到239 mAh/g,在0.5 C下循环100圈后,容量保持率从73.9%提高至87.95%。超薄TiO2包覆层可以减少活性材料NCM9631与电解质的直接接触,不受HF侵蚀,防止金属溶解,有效阻止材料表面的化学和结构变化,以提高结构稳定性与电化学性能。
Abstract:Nickel-rich layered oxide anodes suffer from inherent structural instability, especially when the nickel content is increased to more than 90%, the cycling performance deteriorates dramatically.In order to solve the serious problem of capacity degradation of high nickel materials under long cycling and large multiplicity, Li Ni0.96Co0.03Mn0.01O2(NCM9631) cathode material is used as the object of research in this thesis for the cladding modification study. The coating modification of NCM9631 was carried out using atomic layer deposition technology, in which the TiO2-coated TNCM9631 samples showed good electrochemical performance, and compared with the original material, the initial discharge specific capacity of T-NCM9631 was increased from 226 to 239 m Ah/g, and the capacity retention rate of 100 cycles at 0.5 C was increased from 73.9% to 87.95%. The ultra-thin TiO2 cladding reduces direct contact between the active material and electrolyte, protects the active material T-NCM9631 from HF erosion, and prevents excessive metal dissolution. It effectively prevents the chemical and structural changes on the surface of the material, improves the structural stability of the material, and improves the electrochemical performance of the material.
[1] NITTA N,WU F X,LEE J T,et al. Li-ion battery materials:Present and future[J]. Materials Today,2015,18(5):252-264.
[2] LEE W,MUHAMMAD S,SERGEY C,et al.Advances in the cathode materials for lithium rechargeable batteries[J]. Angewandte Chemie(International Ed.in English),2020,59(7):2578-2605.
[3] HE J N,YANG M,WANG J Y,et al.Ni-rich cathode materials for high-performance Li-ion batteries:Challenges,progress and perspectives[J]. ChemNanoMat,2023,9(7):e202300148.
[4] CHOI J U,VORONINA N,SUN Y K,et al. Recent progress and perspective of advanced high-energy Coless Ni-rich cathodes for Li-ion batteries:Yesterday,today,and tomorrow[J]. Advanced Energy Materials,2020,10(42):2002027.
[5] XIE H G,PENG H R,JIANG D T,et al.Structures,issues,and optimization strategies of Ni-rich and Co-low cathode materials for lithium-ion battery[J]. Chemical Engineering Journal,2023,470:144051.
[6] SCHIPPER F,BOUZAGLO H,DIXIT M,et al.From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries[J]. Advanced Energy Materials,2018,8(4):1701682.
[7] RAMASAMY H, SINHA S, PARK J, et al. Enhancement of electrochemical activity of Ni-rich LiNi0.8Mn0.1Co0.1O2by precisely controlled Al2O3 nanocoatings via atomic layer deposition[J]. Journal of Electrochemical Science and Technology, 2019,10(2):196-205.
[8] ZHAO J Q,QU G Y,FLAKE J C,et al.Low temperature preparation of crystalline ZrO2 coatings for improved elevated-temperature performances of Li-ion battery cathodes[J]. Chemical Communications,2012,48(65):8108-8110.
[9] KIM D W,PARK D,KO C H,et al.Improving electrochemical performance of Ni-rich cathode using atomic layer deposition with particle by particle coating method[J]. Journal of Electrochemical Science and Technology,2021,12(2):237-245.
[10] QIN C C,CAO J L,CHEN J,et al.Improvement of electrochemical performance of nickel rich Li Ni0.6Co0.2Mn0.2O2cathode active material by ultrathin TiO2 coating[J].Dalton Transactions,2016,45(23):9669-9675.
[11] SHI J L,QI R,ZHANG X D,et al.High-thermal-and air-stability cathode material with concentration-gradient buffer for Li-ion batteries[J].ACS Applied Materials&Interfaces,2017,9(49):42829-42835.
[12] MANTHIRAM A,KNIGHT J C,MYUNG S T,et al.Nickel-rich and lithium-rich layered oxide cathodes:Progress and perspectives[J].Advanced Energy Materials,2016,6(1):1501010.
[13] WU K,LI W B,QIN J,et al.Controllable atomic layer deposition coatings to boost the performance of LiMnx Coy Ni1-x-yO2 in lithium-ion batteries:A review[J]. Journal of Materials Research,2020,35(7):762-774.
[14] ZHANG H,ZHOU M Y,LIN C E,et al. Progress in polymeric separators for lithium ion batteries[J]. RSC Advances,2015,5(109):89848-89860.
[15] WANG X,MENG X B. Surface modifications of layered LiNix Mny Coz O2 cathodes via atomic and molecular layer deposition[J]. Rare Metals,2023,42(7):2121-2156.
基本信息:
DOI:10.19996/j.cnki.ChinBatlnd.2025.01.004
中图分类号:TM912;O646;TB43
引用信息:
[1]郑瑶,李荐,王利华等.ALD沉积超薄涂层改善高镍LiNi_(0.96)Co_(0.03)Mn_(0.01)O_2正极材料的电化学性能[J].电池工业,2025,29(01):13-18+23.DOI:10.19996/j.cnki.ChinBatlnd.2025.01.004.
基金信息:
湖南省自然科学基金(2021JJ30794); 湖南省科技创新计划(2022RC1086)