宁德时代新能源科技股份有限公司;
目前对高镍LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2(NCM811)/硅碳(Si-C)体系的电池研究主要集中在循环容量方面,对影响电池可靠性产气的研究较少,尤其不同SOC(state of charge,荷电状态)状态下存储和循环过程中产气行为和机理的系统研究尚未报道。本文采用排水法测产气量,气相色谱-质谱联用(GC-MS)技术测气体成分,使用单极片存储的方法分析产气来源,系统研究了商用软包装锂离子电池在高温中不同SOC状态下的存储,重点分析100%SOC和0%SOC的存储,以及循环中的产气行为。研究表明:在高温中0%~100%SOC区间内,产气量曲线呈现浴盆形状的变化规律。100%SOC下产气明显,随时间持续增加,气体成分主要是CO_2和CO;FEC和注液系数对产气影响显著;产气主要来源于电解液中的EC和NCM811的反应,其次为FEC和NCM811、Si-C的反应。0%SOC下产气平缓,稳定后随时间无变化,主要是CO_2,CO和H_2;产气主要来源于电解液和Si-C的反应。在高温循环过程中,主要产生的气体包括CO_2,CO和H_2。此外,循环后的电芯在高温存储时产气会加剧;在循环过程中,高温存储产生的部分气体会被吸收。
614 | 0 | 38 |
下载次数 | 被引频次 | 阅读次数 |
[2] GUERFI A,CHAREST P,DONTIGNY M,et al.Si Oxgraphite as negative for high energy Li-ion batteries[J].Journal of Power Sources,2011,196(13):5667-5673.
[3]牛少军,吴凯,朱国斌,等.锂离子电池硅基负极循环过程中的膨胀应力[J].储能科学与技术,2022,11(9):2989-2994.
[4] WANG W X,YANG S H. Enhanced overall electrochemical performance of silicon/carbon anode for lithiumion batteries using fluoroethylene carbonate as an electrolyte additive[J]. Journal of Alloys and Compounds,2017,695:3249-3255.
[5] JIN Y T,KNEUSELS N J H,MAGUSIN P C M M,et al.Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate[J].Journal of the American Chemical Society,2017,139(42):14992-15004.
[6] BORDES A,EOM K,FULLER T F. The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes[J]. Journal of Power Sources,2014,257:163-169.
[7] YOSHIDA H,FUKUNAGA T,HAZAMA T,et al.Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging[J]. Journal of Power Sources,1997,68(2):311-315.
[8] TENG X,ZHAN C,BAI Y,et al.In situ analysis of gas generation in lithium-ion batteries with different carbonate-based electrolytes[J].ACS Applied Materials&Interfaces,2015,7(41):22751-22755.
[9] RINKEL B L D,VIVEK J P,GARCIA-ARAEZ N,et al. Two electrolyte decomposition pathways at nickelrich cathode surfaces in lithium-ion batteries[J].Energy&Environmental Science,2022,15(8):3416-3438.
[10] SCHIELE A,BREITUNG B,HATSUKADE T,et al.The critical role of fluoroethylene carbonate in the gassing of silicon anodes for lithium-ion batteries[J]. ACS Energy Letters,2017,2(10):2228-2233.
[11] LIN Y F,JIANG J W,ZHANG Y G,et al.Promoting effect of Si-OH on the decomposition of electrolytes in lithium-ion batteries[J].Chemistry of Materials,2020,32(15):6365-6373.
[12] METZGER M, MARINO C, SICKLINGER J, et al.Anodic oxidation of conductive carbon and ethylene carbonate in high-voltage Li-ion batteries quantified by online electrochemical mass spectrometry[J]. Journal of the Chemical Society,162:A1123–A1134.
[13] SHIN J S,HAN C H,JUNG U H,et al. Effect of Li2CO3 additive on gas generation in lithium-ion batteries[J].Journal of Power Sources,2002,109(1):47-52.
[14] METZGER M,STREHLE B,SOLCHENBACH S,et al. Origin of H2 evolution in LIBs:H2O reduction vs.electrolyte oxidation[J]. Journal of the Electrochemical Society,2016,163(5):A798-A809.
[15] WANG X Q,REN D S,LIANG H M,et al.Ni crossover catalysis:Truth of hydrogen evolution in Ni-rich cathode-based lithium-ion batteries[J]. Energy&Environmental Science,2023,16(3):1200-1209.
[16] MALEKI H,HOWARD J N.Effects of overdischarge on performance and thermal stability of a Li-ion cell[J].Journal of Power Sources,2006,160(2):1395-1402.
基本信息:
DOI:10.19996/j.cnki.ChinBatlnd.2024.05.002
中图分类号:TM912
引用信息:
[1]胡晓艳.高镍/硅碳锂离子电池高温条件下的产气研究[J].电池工业,2024,28(05):230-237.DOI:10.19996/j.cnki.ChinBatlnd.2024.05.002.
基金信息: