2022 01 v.26 26-29+46
锂离子电池正极钴酸锂研究进展
基金项目(Foundation):
邮箱(Email):
DOI:
10.19996/j.cnki.ChinBatlnd.2022.01.007
中文作者单位:
福建南平南孚电池有限公司;
摘要(Abstract):
钴酸锂由于其高压实密度,高能量密度、优异的的循环寿命和安全可靠性,仍然是便携式电子用锂离子电池正极主要材料。随着消费类电子产品对锂离子电池续航能力的要求不断提高,钴酸锂的充电截止电压不断提高,以实现更高的能量密度。然而,随着充电截止电压不断提高,钴酸锂正极的缺陷也不断暴露,例如颗粒表界面稳定性下降、不可逆相变以及在高电压的不均匀反应等问题,均会导致容量、库伦效率、循环寿命受到影响。因此,对钴酸锂在高压下的实效机理及其改进方法进行综述。
关键词(KeyWords):
锂离子电池;钴酸锂;电压;元素掺杂;表面包覆
3,154 | 13 | 14 |
下载次数 | 被引频次 | 阅读次数 |
参考文献
[1] MIZUSHIMA K,JONES P C,WISEMAN P J,et al.LixCoO2(0 [2] WANG L,CHEN B,MA J,et al.Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density[J].The Royal Society of Chemistry,2018(47):6505-6602.
[3] WANG X,WANG X Y,LU Y Y.Realizing high voltage lithium cobalt oxide in lithium-ion batteries[J].Industrial & Engineering Chemistry Research,2019(58):10119-10139.
[4] WANG K,WAN J J,XIANG Y X,et al.Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries[J].Journal of Power Sources,2020(460):228062-228078.
[5] QIAN J,LIU L,YANG J,et al.Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries[J].Nature Communication,2018(9):4918-2929.
[6] ZHANG J N,LI Q H,OU Y,et al.Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J].Nature Energy,2019(4):594-603.
[7] AURBACH D,MARKOVSKY B,RODKIN A,et al.An analysis of rechargeable lithium-ion batteries after prolonged cycling[J].Electrochimica Acta,2002(5):1-13.
[8] AURBACH D,MARKOVSKY B,RODKIN A,et al.On the capacity fading of LiCoO2 intercalation electrodes:the effect of cycling,storage,temperature,and surface film forming additives[J].Electrochimica Acta,2002(47):4291-4306.
[9] ZHANG D,HARAN B S,DURAIRAJAN A,et al.Studies on capacity fade of lithium-ion batteries[J].Journal of Power Sources,2000(91):122-129.
[10] GANG N,BALA H,POPOV B N.Capacity fade study of lithium-ion batteries cycled at high discharge rates[J].Journal of Power Sources,2003(1):117,160-169.
[11] FATHI R,BURNS J C,STEVENS D A,et al.Ultra high-precision studies of degradation mechanisms in aged LiCoO2/graphite Li-ion cells[J].Journal of The Electrochemical Society,2014(161):A1572-A1579.
[12] WANG H F,JANG Y I,HUANG B Y,et al.Electron microscopic characterization of electrochemically cycled LiCoO2 and Li(Al,Co)O2 battery cathodes[J].Journal of Power Sources,1999(81):594-598
[13] CHEN Z H,DAHN J R.Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V[J].Electrochimica Acta,2004(49):1079-1090.
[14] XIA H,LU L,MENG Y S,et al.Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition[J].Journal of The Electrochemical Society,2007(154):A337-A342.
[15] TUKAMOTO H,WEST A R.Electronic conductivity of LiCoO2 and its enhancement by magnesium doping[J].Journal of The Electrochemical Society,1997(144):3164-3168.
[16] SUN L W,ZHANG Z S,HU X F,et al.Realization of Ti doping by electrostatic assem bly to improve the stability of LiCoO2 cycled to 4.5 V[J].Journal of The Electrochemical Society,2019(166):A1793-A1798.
[17] KIM S,CHOI S,LEE K,et al.Self-assembly of core-shell structures driven by low doping limit of Ti in LiCoO2:first-principles thermodynamic and experimental investigation[J].Physical Chemistry Chemical Physics,2017(19):4104-4113.
[18] CEDER G.,CHIANG Y M,SADOWAY D R,et al.Identification of cathode materials for lithium batteries guided by first-principles calculations[J].Nature,1998(392):694-696.
[19] YANG M H,ZHOU W C,LUO F,et al.Enhanced dielectric and microwave absorption properties of LiCoO2 powders by magnesium doping in the X-band[J].Journal of the American Ceramic Society,2019(102):4048-4055.
[20] CHEN Z H,QIN Y,AMINE K,et al.Role of surface coating on cathode materials for lithium-ion batteries[J].Journal of Materials Chemistry,2010(20):7606-7612.
[21] XIE J,ZHAO J,LIU Y Y,et al.Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries[J].Nano Research,2017(10):3754-3764.
[22] HALL D S,GAUTHIER R B,ELDESOKY A,et al.New chemical insights into the beneficial role of Al2O3 cathode coatings in lithium-ion cells[J].ACS Appl Mater Interfaces,2019(11):14095-14100.
[23] SHIM J H,LEE S H AND PARK S S.Effects of MgO coating on the structural and electrochemical characteristics of LiCoO2 as cathode materials for lithium ion battery[J].Chemistry of Materials,2014(26):2537-2543.
[24] LIANG L W,DU K,PENG Z D,et al.Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries[J].Electrochimica Acta,2014(130):82-89.
[25] WANG L,MA J,WANG C,et al.A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability[J].Advanced Science,2019(6):1900355-1900366.
[3] WANG X,WANG X Y,LU Y Y.Realizing high voltage lithium cobalt oxide in lithium-ion batteries[J].Industrial & Engineering Chemistry Research,2019(58):10119-10139.
[4] WANG K,WAN J J,XIANG Y X,et al.Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries[J].Journal of Power Sources,2020(460):228062-228078.
[5] QIAN J,LIU L,YANG J,et al.Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries[J].Nature Communication,2018(9):4918-2929.
[6] ZHANG J N,LI Q H,OU Y,et al.Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J].Nature Energy,2019(4):594-603.
[7] AURBACH D,MARKOVSKY B,RODKIN A,et al.An analysis of rechargeable lithium-ion batteries after prolonged cycling[J].Electrochimica Acta,2002(5):1-13.
[8] AURBACH D,MARKOVSKY B,RODKIN A,et al.On the capacity fading of LiCoO2 intercalation electrodes:the effect of cycling,storage,temperature,and surface film forming additives[J].Electrochimica Acta,2002(47):4291-4306.
[9] ZHANG D,HARAN B S,DURAIRAJAN A,et al.Studies on capacity fade of lithium-ion batteries[J].Journal of Power Sources,2000(91):122-129.
[10] GANG N,BALA H,POPOV B N.Capacity fade study of lithium-ion batteries cycled at high discharge rates[J].Journal of Power Sources,2003(1):117,160-169.
[11] FATHI R,BURNS J C,STEVENS D A,et al.Ultra high-precision studies of degradation mechanisms in aged LiCoO2/graphite Li-ion cells[J].Journal of The Electrochemical Society,2014(161):A1572-A1579.
[12] WANG H F,JANG Y I,HUANG B Y,et al.Electron microscopic characterization of electrochemically cycled LiCoO2 and Li(Al,Co)O2 battery cathodes[J].Journal of Power Sources,1999(81):594-598
[13] CHEN Z H,DAHN J R.Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V[J].Electrochimica Acta,2004(49):1079-1090.
[14] XIA H,LU L,MENG Y S,et al.Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition[J].Journal of The Electrochemical Society,2007(154):A337-A342.
[15] TUKAMOTO H,WEST A R.Electronic conductivity of LiCoO2 and its enhancement by magnesium doping[J].Journal of The Electrochemical Society,1997(144):3164-3168.
[16] SUN L W,ZHANG Z S,HU X F,et al.Realization of Ti doping by electrostatic assem bly to improve the stability of LiCoO2 cycled to 4.5 V[J].Journal of The Electrochemical Society,2019(166):A1793-A1798.
[17] KIM S,CHOI S,LEE K,et al.Self-assembly of core-shell structures driven by low doping limit of Ti in LiCoO2:first-principles thermodynamic and experimental investigation[J].Physical Chemistry Chemical Physics,2017(19):4104-4113.
[18] CEDER G.,CHIANG Y M,SADOWAY D R,et al.Identification of cathode materials for lithium batteries guided by first-principles calculations[J].Nature,1998(392):694-696.
[19] YANG M H,ZHOU W C,LUO F,et al.Enhanced dielectric and microwave absorption properties of LiCoO2 powders by magnesium doping in the X-band[J].Journal of the American Ceramic Society,2019(102):4048-4055.
[20] CHEN Z H,QIN Y,AMINE K,et al.Role of surface coating on cathode materials for lithium-ion batteries[J].Journal of Materials Chemistry,2010(20):7606-7612.
[21] XIE J,ZHAO J,LIU Y Y,et al.Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries[J].Nano Research,2017(10):3754-3764.
[22] HALL D S,GAUTHIER R B,ELDESOKY A,et al.New chemical insights into the beneficial role of Al2O3 cathode coatings in lithium-ion cells[J].ACS Appl Mater Interfaces,2019(11):14095-14100.
[23] SHIM J H,LEE S H AND PARK S S.Effects of MgO coating on the structural and electrochemical characteristics of LiCoO2 as cathode materials for lithium ion battery[J].Chemistry of Materials,2014(26):2537-2543.
[24] LIANG L W,DU K,PENG Z D,et al.Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries[J].Electrochimica Acta,2014(130):82-89.
[25] WANG L,MA J,WANG C,et al.A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability[J].Advanced Science,2019(6):1900355-1900366.
基本信息:
DOI:10.19996/j.cnki.ChinBatlnd.2022.01.007
中图分类号:TM912;TQ131.11
引用信息:
[1]杨鑫,陈娟,常海涛.锂离子电池正极钴酸锂研究进展[J].电池工业,2022,26(01):26-29+46.DOI:10.19996/j.cnki.ChinBatlnd.2022.01.007.
基金信息: