3,211 | 13 | 26 |
下载次数 | 被引频次 | 阅读次数 |
钴酸锂由于其高压实密度,高能量密度、优异的的循环寿命和安全可靠性,仍然是便携式电子用锂离子电池正极主要材料。随着消费类电子产品对锂离子电池续航能力的要求不断提高,钴酸锂的充电截止电压不断提高,以实现更高的能量密度。然而,随着充电截止电压不断提高,钴酸锂正极的缺陷也不断暴露,例如颗粒表界面稳定性下降、不可逆相变以及在高电压的不均匀反应等问题,均会导致容量、库伦效率、循环寿命受到影响。因此,对钴酸锂在高压下的实效机理及其改进方法进行综述。
Abstract:Lithium cobalt oxide is still the cathode material for Portable electronic equipment due to high pressure density, high energy density, excellent cycle life and safety.With the increasing requirements of lithium-ion battery in portable electronic products, the charging cut-off voltage of Lithium cobalt oxide is increasing to achieve higher energy density.However, with the continuous increase of the charging cut-off voltage, the defects of Lithium cobalt oxide are constantly exposed, such as the decrease of surface stability, irreversible phase transition and uneven reaction at high voltage, which will affect the capacity, coulombic efficiency and cycle life.Therefore, this paper reviews the effective mechanism and improvement methods of Lithium cobalt oxide under high voltage.
[1] MIZUSHIMA K,JONES P C,WISEMAN P J,et al.LixCoO2(0
[2] WANG L,CHEN B,MA J,et al.Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density[J].The Royal Society of Chemistry,2018(47):6505-6602.
[3] WANG X,WANG X Y,LU Y Y.Realizing high voltage lithium cobalt oxide in lithium-ion batteries[J].Industrial & Engineering Chemistry Research,2019(58):10119-10139.
[4] WANG K,WAN J J,XIANG Y X,et al.Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries[J].Journal of Power Sources,2020(460):228062-228078.
[5] QIAN J,LIU L,YANG J,et al.Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries[J].Nature Communication,2018(9):4918-2929.
[6] ZHANG J N,LI Q H,OU Y,et al.Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J].Nature Energy,2019(4):594-603.
[7] AURBACH D,MARKOVSKY B,RODKIN A,et al.An analysis of rechargeable lithium-ion batteries after prolonged cycling[J].Electrochimica Acta,2002(5):1-13.
[8] AURBACH D,MARKOVSKY B,RODKIN A,et al.On the capacity fading of LiCoO2 intercalation electrodes:the effect of cycling,storage,temperature,and surface film forming additives[J].Electrochimica Acta,2002(47):4291-4306.
[9] ZHANG D,HARAN B S,DURAIRAJAN A,et al.Studies on capacity fade of lithium-ion batteries[J].Journal of Power Sources,2000(91):122-129.
[10] GANG N,BALA H,POPOV B N.Capacity fade study of lithium-ion batteries cycled at high discharge rates[J].Journal of Power Sources,2003(1):117,160-169.
[11] FATHI R,BURNS J C,STEVENS D A,et al.Ultra high-precision studies of degradation mechanisms in aged LiCoO2/graphite Li-ion cells[J].Journal of The Electrochemical Society,2014(161):A1572-A1579.
[12] WANG H F,JANG Y I,HUANG B Y,et al.Electron microscopic characterization of electrochemically cycled LiCoO2 and Li(Al,Co)O2 battery cathodes[J].Journal of Power Sources,1999(81):594-598
[13] CHEN Z H,DAHN J R.Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V[J].Electrochimica Acta,2004(49):1079-1090.
[14] XIA H,LU L,MENG Y S,et al.Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition[J].Journal of The Electrochemical Society,2007(154):A337-A342.
[15] TUKAMOTO H,WEST A R.Electronic conductivity of LiCoO2 and its enhancement by magnesium doping[J].Journal of The Electrochemical Society,1997(144):3164-3168.
[16] SUN L W,ZHANG Z S,HU X F,et al.Realization of Ti doping by electrostatic assem bly to improve the stability of LiCoO2 cycled to 4.5 V[J].Journal of The Electrochemical Society,2019(166):A1793-A1798.
[17] KIM S,CHOI S,LEE K,et al.Self-assembly of core-shell structures driven by low doping limit of Ti in LiCoO2:first-principles thermodynamic and experimental investigation[J].Physical Chemistry Chemical Physics,2017(19):4104-4113.
[18] CEDER G.,CHIANG Y M,SADOWAY D R,et al.Identification of cathode materials for lithium batteries guided by first-principles calculations[J].Nature,1998(392):694-696.
[19] YANG M H,ZHOU W C,LUO F,et al.Enhanced dielectric and microwave absorption properties of LiCoO2 powders by magnesium doping in the X-band[J].Journal of the American Ceramic Society,2019(102):4048-4055.
[20] CHEN Z H,QIN Y,AMINE K,et al.Role of surface coating on cathode materials for lithium-ion batteries[J].Journal of Materials Chemistry,2010(20):7606-7612.
[21] XIE J,ZHAO J,LIU Y Y,et al.Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries[J].Nano Research,2017(10):3754-3764.
[22] HALL D S,GAUTHIER R B,ELDESOKY A,et al.New chemical insights into the beneficial role of Al2O3 cathode coatings in lithium-ion cells[J].ACS Appl Mater Interfaces,2019(11):14095-14100.
[23] SHIM J H,LEE S H AND PARK S S.Effects of MgO coating on the structural and electrochemical characteristics of LiCoO2 as cathode materials for lithium ion battery[J].Chemistry of Materials,2014(26):2537-2543.
[24] LIANG L W,DU K,PENG Z D,et al.Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries[J].Electrochimica Acta,2014(130):82-89.
[25] WANG L,MA J,WANG C,et al.A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability[J].Advanced Science,2019(6):1900355-1900366.
基本信息:
DOI:10.19996/j.cnki.ChinBatlnd.2022.01.007
中图分类号:TM912;TQ131.11
引用信息:
[1]杨鑫,陈娟,常海涛.锂离子电池正极钴酸锂研究进展[J].电池工业,2022,26(01):26-29+46.DOI:10.19996/j.cnki.ChinBatlnd.2022.01.007.
基金信息: