nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg qikanlogo popupnotification paper
2024 03 v.28;No.160 109-120
石榴石基复合固态电解质的界面调控和离子传导机制
基金项目(Foundation): 国家自然科学基金项目(52272185);; 国家重点研发计划(2022YFB2502102);; 北京市杰出青年学者(BJJWZYJH01201910007023)
邮箱(Email): chenrj@bit.edu.cn;
DOI: 10.19996/j.cnki.ChinBatlnd.2024.03.001
中文作者单位:

北京理工大学材料学院;北京理工大学前沿技术研究院;北京电动车辆协同创新中心;

摘要(Abstract):

Li_7La_3Zr_2O_(12)(LLZO)基复合固态电解质(CPE),因综合了聚合物的柔韧性和LLZO的高离子电导率被认为是高能量密度固态锂金属电池的有力候选。本文总结了LLZO基CPE在负极-电解质界面和正极-电解质界面的关键问题,并归纳了近年来解决电极-电解质界面离子传输问题的方法,最后结合最新表征方法和研究观点,深入分析了锂离子在LLZO基CPE中的离子传输路径。本文深入讨论了LLZO基CPE中的锂离子迁移路径和界面离子传输问题,为高能量密度固态锂金属电池的发展提供有益的参考。

关键词(KeyWords): 固态电池;;固态电解质;;石榴石;;界面离子传输;;离子迁移路径
参考文献 [1] HAN B,FENG D Y,LI S,et al.Self-regulated phenomenon of inorganic artificial solid electrolyte interphase for lithium metal batteries[J].Nano Letters,2020,20(5):4029-4037.
[2] TAN S,KIM J M,CORRAO A,et al.Unravelling the convoluted and dynamic interphasial mechanisms on Li metal anodes[J].Nature Nanotechnology,2023,18(3):243-249.
[3] CHEN C,ZHANG J M,HU B R,et al.Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode[J].Nature Communications,2023,14(1):4018.
[4] LIU M,ZHANG S N,VAN ECK E R H,et al.Improving Li-ion interfacial transport in hybrid solid electrolytes[J].Nature Nanotechnology,2022,17(9):959-967.
[5] ZHENG F,KOTOBUKI M,SONG S F,et al.Review on solid electrolytes for all-solid-state lithium-ion batteries[J].Journal of Power Sources,2018,389:198-213.
[6] DIRICAN M,YAN C Y,ZHU P,et al.Composite solid electrolytes for all-solid-state lithium batteries[J].Materials Science and Engineering:R:Reports,2019,136:27-46.
[7] YAO P H,YU H B,DING Z Y,et al.Review on polymer-based composite electrolytes for lithium batteries[J].Frontiers in Chemistry,2019,7:522.
[8] LI S,ZHANG S Q,SHEN L,et al.Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries[J].Advanced Science,2020,7(5):1903088.
[9] SUN Y D,GUAN P Y,LIU Y J,et al.Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery[J].Critical Reviews in Solid State and Material Sciences,2019,44(4):265-282.
[10] NOLAN A M,ZHU Y Z,HE X F,et al.Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries[J].Joule,2018,2(10):2016-2046.
[11] ZHANG Y,ZHAI W B,HU X C,et al.Application of Auger electron spectroscopy in lithium-ion conducting oxide solid electrolytes[J].Nano Research,2023,16(3):4039-4048.
[12] ZHOU Q,MA J,DONG S M,et al.Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J].Advanced Materials,2019,31(50):e1902029.
[13] YANG Y N,LI Y X,LI Y Q,et al.On-surface lithium donor reaction enables decarbonated lithium garnets and compatible interfaces within cathodes[J].Nature Communications,2020,11(1):5519.
[14] GAO Y,SUN S Y,ZHANG X,et al.Amorphous dual-layer coating:Enabling high Li-ion conductivity of non-sintered garnet-type solid electrolyte[J].Advanced Functional Materials,2021,31(15):2009692.
[15] ZHANG Z S,ZHANG L,YU C,et al.Lithium halide coating as an effective intergrain engineering for garnet-type solid electrolytes avoiding high temperature sintering[J].Electrochimica Acta,2018,289:254-263.
[16] ZHU F J,DENG W T,ZHANG B C,et al.In-situ construction of multifunctional interlayer enabled dendrite-free garnet-based solid-state batteries[J].Nano Energy,2023,111:108416.
[17] FAN R,LIAO W C,FAN S X,et al.Regulating interfacial Li-ion transport via an integrated corrugated 3D skeleton in solid composite electrolyte for all-solid-state lithium metal batteries[J].Advanced Science,2022,9(8):e2104506.
[18] LI Z,FU J L,ZHOU X Y,et al.Ionic conduction in polymer-based solid electrolytes[J].Advanced Science,2023,10(10):e2201718.
[19] KIM J S,YOON G,KIM S,et al.Surface engineering of inorganic solid-state electrolytes via interlayers strategy for developing long-cycling quasi-all-solid-state lithium batteries[J].Nature Communications,2023,14(1):782.
[20] ZHANG Z,YINGHUANG,ZHANG G Z,et al.Three-dimensional fiber network reinforced polymer electrolyte for dendrite-free all-solid-state lithium metal batteries[J].Energy Storage Materials,2021,41:631-641.
[21] SHAO B W,HUANG Y L,HAN F D.Electronic conductivity of lithium solid electrolytes[J].Advanced Energy Materials,2023,13(16):2204098.
[22] FAMPRIKIS T,CANEPA P,DAWSON J A,et al.Fundamentals of inorganic solid-state electrolytes for batteries[J].Nature Materials,2019,18(12):1278-1291.
[23] ZHAO Q,STALIN S,ZHAO C Z,et al.Designing solid-state electrolytes for safe,energy-dense batteries[J].Nature Reviews Materials,2020,5(3):229-252.
[24] BALAISH M,GONZALEZ-ROSILLO J C,KIM K J,et al.Processing thin but robust electrolytes for solid-state batteries[J].Nature Energy,2021,6:227-239.
[25] CHEN W P,DUAN H,SHI J L,et al.Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte[J].Journal of the American Chemical Society,2021,143(15):5717-5726.
[26] GUO S J,LI Y T,LI B,et al.Coordination-assisted precise construction of metal oxide nanofilms for high-performance solid-state batteries[J].Journal of the American Chemical Society,2022,144(5):2179-2188.
[27] CHEN L H,ZHANG J,TONG R A,et al.Excellent Li/garnet interface wettability achieved by porous hard carbon layer for solid state Li metal battery[J].Small,2022,18(8):e2106142.
[28] WANG C H,YU R Z,DUAN H,et al.Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes[J].ACS Energy Letters,2022,7(1):410-416.
[29] ZHU L,WANG Y W,CHEN J C,et al.Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites[J].Science Advances,2022,8(11):eabj7698.
[30] ZHANG X,LIU T,ZHANG S F,et al.Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity,mechanical strength,and thermal stability of solid composite electrolytes[J].Journal of the American Chemical Society,2017,139(39):13779-13785.
[31] WANG Z Q,LI X Y,CHEN Y M,et al.Creep-enabled 3D solid-state lithium-metal battery[J].Chem,2020,6(11):2878-2892.
[32] HUO H Y,CHEN Y,LUO J,et al.Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries[J].Advanced Energy Materials,2019,9(17):1804004.
[33] BESHAHWURED S L,WU Y S,WU S H,et al.Flexible hybrid solid electrolyte incorporating ligament-shaped Li6.25Al0.25La3Zr2O12 filler for all-solid-state lithium-metal batteries[J].Electrochimica Acta,2021,366:137348.
[34] YANG G Y,BAI X M,ZHANG Y,et al.A bridge between ceramics electrolyte and interface layer to fast Li+ transfer for low interface impedance solid-state batteries[J].Advanced Functional Materials,2023,33(3):2211387.
[35] SONG C,LI Z G,PENG J,et al.Enhancing Li ion transfer efficacy in PEO-based solid polymer electrolytes to promote cycling stability of Li-metal batteries[J].Journal of Materials Chemistry A,2022,10(30):16087-16094.
[36] CAO S Y,CHEN F,SHEN Q,et al.Dual-coordination-induced poly(vinylidene fluoride)/Li6.4Ga0.2La3Zr2O12/succinonitrile composite solid electrolytes toward enhanced rate performance in all-solid-state lithium batteries[J].ACS Applied Materials & Interfaces,2023,15(31):37422-37432.
[37] ZHAO Z G,WU B R,ZHANG Y X,et al.A promising composite solid electrolyte of garnet-type LLZTO and succinonitrile in thermal polyurethane matrix for all-solid-state lithium-ion batteries[J].Electrochemistry Communications,2023,150:107472.
[38] ZHANG X Y,FU C K,CHENG S C,et al.Novel PEO-based composite electrolyte for low-temperature all-solid-state lithium metal batteries enabled by interfacial cation-assistance[J].Energy Storage Materials,2023,56:121-131.
[39] TRAN H K,TRUONG B T,ZHANG B R,et al.Sandwich-structured composite polymer electrolyte based on PVDF-HFP/PPC/Al-doped LLZO for high-voltage solid-state lithium batteries[J].ACS Applied Energy Materials,2023,6(3):1475-1487.
[40] HE K Q,CHENG S H S,HU J Y,et al.In-situ intermolecular interaction in composite polymer electrolyte for ultralong life quasi-solid-state lithium metal batteries[J].Angewandte Chemie (International Ed.in English),2021,60(21):12116-12123.
[41] NGUYEN H L,LUU V T,NGUYEN M C,et al.Nb/Al co-doped Li7La3Zr2O12 composite solid electrolyte for high-performance all-solid-state batteries[J].Advanced Functional Materials,2022,32(45):2207874.
[42] WANG J,LIAO Y L,WU X,et al.In situ construction of elastic solid-state polymer electrolyte with fast ionic transport for dendrite-free solid-state lithium metal batteries[J].Nanomaterials,2024,14(5):433.
[43] LI B X,YI X L,XIE Z J,et al.A promising composite room temperature solid electrolyte via incorporating LLZTO into cross-linked ETPTA/PEO/SN matrix for all solid state lithium batteries[J].Ionics,2024,30(4):2007-2017.
[44] DENG C L,CHEN N,HOU C Y,et al.Enhancing interfacial contact in solid-state batteries with a gradient composite solid electrolyte[J].Small,2021,17(18):2006578.
[45] CHEN F,RANNALTER L Z,XIANG X,et al.Preparation and electrochemical properties of bicontinuous solid electrolytes derived from porous Li6.4La3Zr1.4Ta0.6O12 incorporated with succinonitrile[J].Journal of the Electrochemical Society,2021,168(11):110537.
[46] WU M J,LIU D,QU D Y,et al.3D coral-like LLZO/PVDF composite electrolytes with enhanced ionic conductivity and mechanical flexibility for solid-state lithium batteries[J].ACS Applied Materials & Interfaces,2020,12(47):52652-52659.
[47] REN Z H,LI J X,GONG Y Y,et al.Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery[J].Energy Storage Materials,2022,51:130-138.
[48] GAO L X,TANG B,JIANG H Y,et al.Fiber-reinforced composite polymer electrolytes for solid-state lithium batteries[J].Advanced Sustainable Systems,2022,6(3):2100389.
[49] PAN P,ZHANG M M,CHENG Z L,et al.Garnet ceramic fabric-reinforced flexible composite solid electrolyte derived from silk template for safe and long-term stable All-Solid-State lithium metal batteries[J].Energy Storage Materials,2022,47:279-287.
[50] WAN H L,XU J J,WANG C S.Designing electrolytesand interphases for high-energy lithium batteries[J].Nature Reviews Chemistry,2023,8(1):30-44.
[51] XU J J.Critical Review on cathode-electrolyte interphase toward high-voltage cathodes for Li-ion batteries[J].Nano-Micro Letters,2022,14(1):166.
[52] LI X,CONG L N,MA S C,et al.Low resistance and high stable solid-liquid electrolyte interphases enable high-voltage solid-state lithium metal batteries[J].Advanced Functional Materials,2021,31(20):2010611.
[53] JIANG T L,HE P G,WANG G X,et al.Solvent-free synthesis of thin,flexible,nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J].Advanced Energy Materials,2020,10(12):1903376.
[54] BI Z J,HUANG W L,MU S,et al.Dual-interface reinforced flexible solid garnet batteries enabled by in situ solidified gel polymer electrolytes[J].Nano Energy,2021,90:106498.
[55] LIU M,XIE W H,LI B,et al.Garnet Li7La3Zr2O12-based solid-state lithium batteries achieved by in situ thermally polymerized gel polymer electrolyte[J].ACS Applied Materials & Interfaces,2022,14(38):43116-43126.
[56] DU M J,SUN Y,LIU B,et al.Smart construction of an intimate lithium|garnet interface for all-solid-state batteries by tuning the tension of molten lithium[J].Advanced Functional Materials,2021,31(31):2101556
[57] HUANG W L,BI Z J,ZHAO N,et al.Chemical interface engineering of solid garnet batteries for long-life and high-rate performance[J].Chemical Engineering Journal,2021,424:130423.
[58] YANG R L,ZHANG Z,ZHANG Q,et al.Flexible asymmetric organic-inorganic composite solid-state electrolyte based on PI membrane for ambient temperature solid-state lithium metal batteries[J].Frontiers in Chemistry,2022,10:855800.
[59] ZHENG X W,WEI J H,LIN W T,et al.Bridging Li7La3Zr2O12 nanofibers with poly(ethylene oxide) by coordination bonds to enhance the cycling stability of all-solid-state lithium metal batteries[J].ACS Applied Materials & Interfaces,2022,14(4):5346-5354.
[60] PAN Z W,CAO S Y,LU X Q,et al.Ammonium fluoride induced barrier-free and oxygen vacancy enhanced LLZO powder for fast interfacial lithium-ion transport in composite solid electrolytes[J].Journal of Materials Chemistry A,2023,11(38):20676-20685.
[61] ZHENG J,TANG M X,HU Y Y.Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J].Angewandte Chemie International Edition,2016,55(40):12538-12542.
[62] YANG T,ZHENG J,CHENG Q,et al.Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers:Mechanism of conductivity enhancement and role of doping and morphology[J].ACS Applied Materials & Interfaces,2017,9(26):21773-21780.
[63] HE J,CHEN H X,WANG D W,et al.Interfacial barrier of ion transport in poly(ethylene oxide)-Li7La3Zr2O12 composite electrolytes illustrated by 6Li-Tracer nuclear magnetic resonance spectroscopy[J].The Journal of Physical Chemistry Letters,2022,13(6):1500-1505.
[64] Zagórski J,López Del Amo J M,Cordill M J,et al.Garnet-polymer composite electrolytes:New insights on local Li-ion dynamics and electrodeposition stability with Li metal anodes[J].ACS Applied Energy Materials,2019,2(3):1734-1746.
[65] LU W Z,XUE M Z,ZHANG C M.Modified Li7La3Zr2O12 (LLZO) and LLZO-polymer composites for solid-state lithium batteries[J].Energy Storage Materials,2021,39:108-129.
[66] ZHENG J,DANG H,FENG X Y,et al.Li-ion transport in a representative ceramic-polymer-plasticizer composite electrolyte:Li7La3Zr2O12-polyethylene oxide-tetraethylene glycol dimethyl ether[J].Journal of Materials Chemistry A,2017,5(35):18457-18463.
[67] ZHENG J,TANG M X,HU Y Y.Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J].Angewandte Chemie,2016,55(40):12538-12542.

基本信息:

DOI:10.19996/j.cnki.ChinBatlnd.2024.03.001

中图分类号:TM912;O646

引用信息:

[1]杨斌斌,邓成龙,陈楠等.石榴石基复合固态电解质的界面调控和离子传导机制[J].电池工业,2024,28(03):109-120.DOI:10.19996/j.cnki.ChinBatlnd.2024.03.001.

基金信息:

国家自然科学基金项目(52272185);; 国家重点研发计划(2022YFB2502102);; 北京市杰出青年学者(BJJWZYJH01201910007023)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文