253 | 0 | 46 |
下载次数 | 被引频次 | 阅读次数 |
本文对天然气重整制氢型固定式发电用燃料电池堆进行时长为1.9万h的耐久测试,并对衰减前后的膜电极的电化学特性、微观结构变化、催化剂成分变化进行研究。结果表明:经过耐久性测试后的电堆膜电极电压衰减27.6%,电堆输出功率显著下降,耐CO性能降低。质子交换膜变薄,催化剂流失,催化剂中Pt和Ru含量(质量分数)显著下降,催化剂层出现开裂、坍塌现象。催化剂粒径由5~6 nm增长至8~10 nm,并且出现直径约为100 nm的催化剂团聚颗粒。催化剂流失和微观结构变化是燃料电池电化学性能衰减的重要原因。
Abstract:This article conducted a durability test of 19 000 hours on a fixed fuel cell stack for hydrogen production from natural gas reforming, and studied the electrochemical characteristics,microstructure changes, and catalyst composition changes of the membrane electrode before and after attenuation. The research results show that after durability testing, the voltage degradation of the stack membrane electrode is 27.6%, the output power of the stack is significantly reduced, and the anti CO ability is reduced. The proton exchange membrane becomes thinner, and the surface catalyst is lost. The content of Pt and Ru in the catalyst significantly decreases, and the catalyst layer cracks and collapses. The particle size of the catalyst increased from 5~6 nm to 8~10 nm, and catalyst agglomerates with a diameter of approximately 100 nm appeared. Catalyst loss and microstructure changes are important reasons for the electrochemical performance degradation of fuel cells.
[1]陈宏,鲁亮,董江波,等.10 kW质子交换膜燃料电池电堆模拟工况下耐久性测试及衰减机理研究[J].中国科学:化学,2023,53(9):1792-1800.
[2]王娜,刘永峰,裴普成,等.相对湿度对燃料电池电压衰减影响的渐进分析[J].电源技术,2017,41(8):1130-1132,1135.
[3]胡志祥,商政,熊文楷,等.燃料电池耐久性优化方法研究[J].电池工业,2024,28(2):84-88.
[4] DESANTES J M,NOVELLA R,PLA B,et al. A modeling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications[J].Applied Energy,2022,317:119137.
[5] TACCANI R,CHINESE T,ZULIANI N. Performance analysis of a micro CHP system based on high temperature PEM fuel cells subjected to degradation[J].Energy Procedia,2017,126:421-428.
[6]赵鑫,杨沄芃,郭建强.燃料电池质子交换膜研究现状与展望[J].电池工业,2023,27(4):205-209.
[7]王诚,黄俊,王树博,等.车用燃料电池启停工况性能衰减[J].化学通报,2016,79(11):1001-1011.
[8]肖飞虎,谭金婷,潘牧.质子交换膜在开路状态下的衰退机理[J].武汉理工大学学报,2018,40(7):1-10.
[9]常亚飞.质子交换膜燃料电池催化剂层机械衰减的实验与模拟研究[D].天津:天津大学,2018:11-20.
[10]曹蓉,汪梦雅,夏杰桢,等.燃料电池中Pt基催化剂对CO的催化氧化[J].化学通报,2022,85(5):547-552.
[11]王琨.质子交换膜燃料电池模拟车载工况条件下衰减行为研究[D].北京:北京化工大学,2021:64-68.
[12]周操.质子交换膜燃料电池阴极催化层衰减机理研究[D].大连:大连理工大学,2022:21-25.
[13]潘凤文.基于石墨化载体Pt/C催化剂的膜电极性能衰减机理研究[D].长春:吉林大学,2021:28-32.
基本信息:
DOI:10.19996/j.cnki.ChinBatlnd.2025.01.002
中图分类号:TM911.4
引用信息:
[1]马勍,吕青青,蔡信等.固定式发电燃料电池膜电极性能衰减分析[J].电池工业,2025,29(01):3-8.DOI:10.19996/j.cnki.ChinBatlnd.2025.01.002.
基金信息: