906 | 1 | 185 |
下载次数 | 被引频次 | 阅读次数 |
本论文采用了Transformer模型与多种深度学习模型的组合模型来预测电池的健康状态(SOH)和剩余使用寿命(RUL)。在NASA公开数据集合上进行了测试,使用电流、电压和温度来预测SOH,使用电流、电阻和阻抗来预测RUL。该模型首先利用卷积神经网络(convolution neural network, CNN)提取输入数据的空间特征,然后使用双向长短期记忆网络(bidirectional long short-term memory, BiLSTM)提取输入数据的时间序列变化规律,再利用Transformer模型的多头注意力机制和前馈网络学习输入数据的特征表示,最后通过注意力机制进一步选取输入数据的时空特征中的重要部分,以共同预测SOH和RUL。实验结果表明,该模型在测试数据上的SOH预测均方误差(root mean square error, RMSE)达到0.084 85,RUL预测的RMSE达到1.46,其效果均优于传统方法。因此,该深度学习模型能够有效地提高电池SOH和RUL的预测精度和稳定性。
Abstract:This paper employs a combined model of the Transformer model and various deep learning models to predict the SOH(State of Health) and RUL(Remaining Useful Life) of a battery.The model was tested on NASA's public data set, using current, voltage, and temperature to predict SOH,and current, resistance, and impedance to predict RUL.The model first uses a Convolutional Neural Network(CNN) model to extract the spatial features of the input data, and then uses a Bidirectional Long Short Term Memory(BiLSTM) model to extract the time series variation pattern of the input data.Then, the Transformer model's multi head attention mechanism and feedforward network is used to learn the feature representation of the input data.Finally, the attention mechanism is used to further select important parts of the spatiotemporal features of the input data and jointly predict SOH and RUL.Experiments on test data show that the Root Mean Square Error(RMSE) of SOH prediction reaches 0.084 85,and the mean square error of RUL prediction reaches 1.46,both of which are better than traditional methods.
[1] 王斐.基于LSTM神经网络的锂电池SOH预测研究[D].重庆:重庆邮电大学,2020.
[2] 李苏阳,陈富安.基于注意力机制的双向LSTM锂电池SOH估算模型[J].电源技术,2022,46(7):739-742.
[3] 刘伟霞,田勋,肖家勇,等.基于混合模型及LSTM的锂电池SOH与剩余寿命预测[J].储能科学与技术,2021,10(2):689-694.
[4] 王英楷,张红,王星辉.基于1DCNN-LSTM的锂离子电池SOH预测[J].储能科学与技术,2022,11(1):240-245.
[5] 陈赐阳,陈德旺.基于CNN-LSTM的锂电池剩余寿命(RUL)间接预测研究[J].电源技术,2021,45(5):589-594.
[6] 张岸,杨春德.基于GAN-CNN-LSTM的锂电池SOH估计[J].电源技术,2021,45(7):902-906.
[7] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in neural information processing systems,2017.
基本信息:
DOI:10.19996/j.cnki.ChinBatlnd.2024.04.005
中图分类号:TM912
引用信息:
[1]常伟,胡志超,潘多昭等.基于Transformer组合模型的锂电池SOH和RUL预测[J].电池工业,2024,28(04):184-190+198.DOI:10.19996/j.cnki.ChinBatlnd.2024.04.005.
基金信息: