nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg qikanlogo popupnotification paper
2024 03 v.28;No.160 150-156
PMMA基凝胶聚合物电解质在石墨/LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2电池中的研究
基金项目(Foundation):
邮箱(Email):
DOI: 10.19996/j.cnki.ChinBatlnd.2024.03.005
中文作者单位:

广州天赐高新材料股份有限公司;

摘要(Abstract):

凝胶聚合物电解质(GPE)是当前最具商业化应用前景之一的准固态电解质,可以缓解甚至解决锂离子电池存在的漏液、挥发、燃烧等潜在安全问题。本文通过高温原位固化技术制备了一种以甲基丙烯酸甲酯为单体、聚乙二醇二甲基丙烯酸酯为交联剂、双(氟磺酰)亚胺锂为导电盐、碳酸乙烯酯/碳酸甲乙酯混合溶剂为增塑剂的GPE。通过热重分析对聚甲基丙烯酸甲酯(PMMA)基GPE的热力学性质进行了表征,采用计时安培法和电子扫描显微镜研究了PMMA基GPE对Al集流体的稳定性。研究结果表明,PMMA基GPE在室温拥有较高的电导率,达到6.61 mS/cm,同时可以将碳酸酯电解液的挥发温度由100.3℃提高至138.1℃。PMMA基GPE在高电位下对Al箔显示出良好的稳定性,4.3 V vs.Li/Li~+以下不会发生铝箔腐蚀,而且在商用石墨/LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2软包电池中展现出良好的循环稳定性和容量保持能力,循环1 000次后容量保持率为93.4%。

关键词(KeyWords): 凝胶聚合物电解质;;甲基丙烯酸甲酯;;双(氟磺酰)亚胺锂;;原位固化
参考文献 [1] ARMAND M,TARASCON J M.Building better batteries[J].Nature,2008,451:652-657.
[2] FENG X N,OUYANG M G,LIU X,et al.Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J].Energy Storage Materials,2018,10:246-267.
[3] XU K.Electrolytes and interphases in Li-ion batteries and beyond[J].Chemical Reviews,2014,114(23):11503-11618.
[4] CHENG X R,JIANG Y,LU C H,et al.In situ synthesis of gel polymer electrolytes for lithium batteries[J].Batteries & Supercaps,2023,6(6):2300057.
[5] LIU Q,WANG L,HE X M.Toward practical solid-state polymer lithium batteries by in situ polymerization press:A review[J].Advanced Energy Materials,2023,13(30):2300798.
[6] MA Q,QI X G,TONG B,et al.Novel Li [(CF3SO2)(n-C4F9SO2)N]-based polymer electrolytes for solid-state lithium batteries with superior electrhemical performance[J].ACS Applied Materials & Interfaces,2016,8(43):29705-29712.
[7] DIAS F B,PLOMP L,VELDHUIS J B J.Trends in polymer electrolytes for secondary lithium batteries[J].Journal of Power Sources,2000,88(2):169-191.
[8] LIANG S S,YAN W Q,WU X,et al.Gel polymer electrolytes for lithium ion batteries:Fabrication,characterization and performance[J].Solid State Ionics,2018,318:2-18.
[9] LU G L,ZHANG Y J,ZHANG J J,et al.Trade-offs between ion-conducting and mechanical properties:The case of polyacrylate electrolytes[J].Carbon Energy,2023,5(2):e287.
[10] XU K.Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J].Chemical Reviews,2004,104(10):4303-4417.
[11] CAMPION C L,LI W T,LUCHT B L.Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries[J].Journal of the Electrhemical Siety,2005,152(12):A2327.
[12] SONG Z Y,ZHENG L P,CHENG P F,et al.Taming the chemical instability of lithium hexafluorophosphate-based electrolyte with lithium fluorosulfonimide salts[J].Journal of Power Sources,2022,526:231105.
[13] HAN H B,ZHOU S S,ZHANG D J,et al.Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries:Physichemical and electrhemical properties[J].Journal of Power Sources,2011,196(7):3623-3632.
[14] PHILIPPE B,DEDRYVèRE R,GORGOI M,et al.Improved performances of nanosilicon electrodes using the salt LiFSI:A photoelectron spectroscopy study[J].Journal of the American Chemical Siety,2013,135(26):9829-9842.
[15] 甘朝伦,秦虎,袁杰,等.高浓度LiFSI锂硫电池电解液[J].电池工业,2019,23(5):236-239.
[16] ZHANG L F,CHAI L L,ZHANG L,et al.Synergistic effect between lithium bis(fluorosulfonyl)imide (LiFSI) and lithium bis-oxalato borate (LiBOB) salts in LiPF6-based electrolyte for high-performance Li-ion batteries[J].Electrhimica Acta,2014,127:39-44.
[17] 尚晓锋,吴凯卓,王美.双氟磺酰亚胺锂对三元材料锂离子电池性能的影响[J].电池工业,2017,21(5):9-13.
[18] 吴晨,周颖,朱晓龙,等.锂金属电池用高浓度电解液体系研究进展[J].物理化学学报,2021,37(2):30-46.
[19] 王星星,宋子钰,吴浩,等.固态聚合物电解质导电锂盐的研究进展[J].储能科学与技术,2022,11(4):1226-1235.
[20] HOSSEINIOUN A,PAILLARD E.In situ crosslinked PMMA gel electrolyte from a low viscosity precursor solution for cost-effective,long lasting and sustainable lithium-ion batteries[J].Journal of Membrane Science,2020,594:117456.
[21] GABRYELCZYK A,IVANOV S,BUND A,et al.Corrosion of aluminium current collector in lithium-ion batteries:A review[J].Journal of Energy Storage,2021,43:103226.
[22] MA T Y,XU G L,LI Y,et al.Revisiting the corrosion of the aluminum current collector in lithium-ion batteries[J].The Journal of Physical Chemistry Letters,2017,8(5):1072-1077.
[23] LI L F,ZHOU S S,HAN H B,et al.Transport and electrhemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents[J].Journal of the Electrhemical Siety,2011,158(2):A74-A82.
[24] LUO C Y,LI Y J,SUN W W,et al.Revisiting the corrosion mechanism of LiFSI based electrolytes in lithium metal batteries[J].Electrhimica Acta,2022,419:140353.
[25] YAMADA Y,CHIANG C H,SODEYAMA K,et al.Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes[J].ChemElectrhem,2015,2(11):1627.
[26] WANG J H,YAMADA Y,SODEYAMA K,et al.Superconcentrated electrolytes for a high-voltage lithium-ion battery[J].Nature Communications,2016,7:12032.
[27] QIAO L X,OTEO U,MARTINEZ-IBA?EZ M,et al.Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries[J].Nature Materials,2022,21(4):455-462.
[28] KALHOFF J,BRESSER D,BOLLOLI M,et al.Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (co)solvent[J].ChemSusChem,2014,7(10):2939-2946.
[29] LIU Y,ZOU H Q,HUANG Z L,et al.In situ polymerization of 1,3-dioxane as a highly compatible polymer electrolyte to enable the stable operation of 4.5 V Li-metal batteries[J].Energy & Environmental Science,2023,16(12):6110-6119.
[30] ZHAO Q,LIU X,STALIN S,et al.Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J].Nature Energy,2019,4:365-373.
[31] WANG X Q,REN D S,LIANG H M,et al.Ni crossover catalysis:Truth of hydrogen evolution in Ni-rich cathode-based lithium-ion batteries[J].Energy & Environmental Science,2023,16(3):1200-1209.
[32] CHENG P F,ZHANG H,MA Q,et al.Highly salt-concentrated electrolyte comprising lithium bis(fluorosulfonyl)imide and 1,3-dioxolane-based ether solvents for 4-V-class rechargeable lithium metal cell[J].Electrhimica Acta,2020,363:137198.
[33] TASKOVIC T,ELDESOKY A,AIKEN C P,et al.Low-voltage operation and lithium bis(fluorosulfonyl)imide electrolyte salt enable long Li-ion cell lifetimes at 85 ℃[J].Journal of the Electrhemical Siety,2022,169(10):100547.

基本信息:

DOI:10.19996/j.cnki.ChinBatlnd.2024.03.005

中图分类号:TM912;O646;O631

引用信息:

[1]程鹏飞,范超君,刘倩彤等.PMMA基凝胶聚合物电解质在石墨/LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2电池中的研究[J].电池工业,2024,28(03):150-156.DOI:10.19996/j.cnki.ChinBatlnd.2024.03.005.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文