nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.29 184-194
面向锂电池固态化的界面特性及表征技术分析
基金项目(Foundation):
邮箱(Email):
DOI: 10.19996/j.cnki.ChinBatlnd.2025.03.007
摘要:

固态电池因其优异的安全性和高能量密度成为下一代电池技术的重要发展方向。然而,固-固界面作为电池内部离子传输的重要通道,面临着点接触、离子传输效率低、界面副反应和机械稳定性差等挑战。本文综述了固态电池中固-固界面的特性,并评述了电化学分析技术、拆解分析技术、无损检测技术以及在线传感技术等先进表征技术的应用。通过界面劣化过程解析,揭示了接触裂化与副反应裂化的协同作用机制。面向固态电池装车应用需求,展望了界面工程的未来发展方向,提出复合电解质设计、功能性添加剂开发等界面改性策略,并探讨了界面科学的新研究方向。

Abstract:

Solid-state batteries(SSBs), known for their excellent safety and high energy density,have emerged as a key development direction for next-generation traction battery technology.However, the solid-solid interfaces, which serve as critical pathways for ion transport within the battery, face significant challenges such as point contact, low ion transport efficiency, interface reactions, and poor mechanical stability. This article reviews the characteristics of solid-solid interfaces in SSBs and evaluates the application of advanced characterization techniques, including electrochemical analysis, disassembly analysis, non-destructive testing, and online sensing technologies. By analyzing the processes of interface degradation, the synergistic mechanism of contact cracking and by-product reaction cracking is revealed. In response to the requirements for the integration of SSBs into vehicles, the future development of interface engineering is explored.Strategies such as composite electrolyte design and the development of functional additives are proposed as interface modification approaches, offering insights into new directions for interface science research.

参考文献

[1] DOUGHTY D H, ROTH E P. A general discussion of Li ion battery safety[J]. The Electrochemical Society Interface, 2012, 21(2):37-44.

[2] MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications,2020,11(1):1550.

[3] KRAFT M A,OHNO S,ZINKEVICH T,et al.Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGex S5I for all-solid-state batteries[J].Journal of the American Chemical Society,2018,140(47):16330-16339.

[4] LIANG J W,LI X N,ADAIR K R,et al.Metal halide superionic conductors for all-solid-state batteries[J].Accounts of Chemical Research,2021,54(4):1023-1033.

[5] KWAK H,WANG S,PARK J,et al.Emerging halide superionic conductors for all-solid-state batteries:Design,synthesis,and practical applications[J]. ACS Energy Letters,2022,7(5):1776-1805.

[6] HUANG Y L,SHAO B W,HAN F D.Interfacial challenges in all-solid-state lithium batteries[J]. Current Opinion in Electrochemistry,2022,33:100933.

[7] HLUSHKOU D,REISING A E,KAISER N,et al.The influence of void space on ion transport in a composite cathode for all-solid-state batteries[J]. Journal of Power Sources,2018,396:363-370.

[8] REN Y Y,DANNER T,MOY A,et al. Oxide-based solid-state batteries:A perspective on composite cathode architecture[J]. Advanced Energy Materials,2023,13(1):2201939.

[9] DIXIT M B,PARK J S,KENESEI P,et al.Status and prospect of in situ and operando characterization of solidstate batteries[J]. Energy&Environmental Science,2021,14(9):4672-4711.

[10] SUN Y K. Promising all-solid-state batteries for future electric vehicles[J]. ACS Energy Letters. 2020,5(10):3221-3223.

[11] WU J H,SHEN L,ZHANG Z H,et al.All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes[J].Electrochemical Energy Reviews,2021,4(1):101-135.

[12] CAO D X,LI Q,SUN X,et al. Amphipathic binder integrating ultrathin and highly ion-conductive sulfide membrane for cell-level high-energy-density all-solidstate batteries[J].Advanced Materials,2021,33(52):2105505.

[13] LEE D,MESNIER A,MANTHIRAM A. Crack-free single-crystalline LiNiO2 for high energy density allsolid-state batteries[J]. Advanced Energy Materials,2024,14(19):2303490.

[14] XU R C,HAN F D,JI X,et al.Interface engineering of sulfide electrolytes for all-solid-state lithium batteries[J].Nano Energy,2018,53:958-966.

[15] WANG S,FANG R Y,LI Y T,et al.Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes[J]. Journal of Materiomics,2021,7(2):209-218.

[16]吴勇民,马尚德,田文生,等.基于固态电解质膜的软包电池制备与初步表征[J].电池工业,2024,28(3):157-162.

[17] XU H F,YANG S B,LI B.Pressure effects and countermeasures in solid-state batteries:A comprehensive review[J].Advanced Energy Materials,2024,14(16):2303539.

[18]施艳霞,司雅楠,邵俊华,等.全固态电池电解质研究进展及挑战[J/OL].电池工业,1-8[2025-04-22].http://kns.cnki.net/kcms/detail/32.1448.tm.20250422.1111.002.html.

[19] TAO H L,CHEN G,LIAN C,et al.Multiscale modeling of ion transport in porous electrodes[J]. AIChE Journal,2022,68(4):e17571.

[20] QUILTY C D,WU D R,LI W Z,et al.Electron and ion transport in lithium and lithium-ion battery negative and positive composite electrodes[J]. Chemical Reviews,2023,123(4):1327-1363.

[21] LEE S,KIM Y,PARK C,et al.Interplay of cathode–halide solid electrolyte in enhancing thermal stability of charged cathode material in all-solid-state batteries[J].ACS Energy Letters,2024,9(4):1369-1380.

[22] WANG J,ZHAO S Q,ZHANG A B,et al. High lithium-ion conductivity,halide-coated,Ni-rich NCM improves cycling stability in sulfide all-solid-state batteries[J]. ACS Applied Energy Materials,2023,6(7):3671-3681.

[23] XIAO Y H,WANG Y,BO S H,et al.Understanding interface stability in solid-state batteries[J]. Nature Reviews Materials,2019,5(2):105-126.

[24] PELED E, MENKIN S. SEI:past, present and future[J]. Journal of the Electrochemical Society, 2017, 164(7):A1703.

[25] XU H Y,HAN C,LI W T,et al. Quantification of lithium dendrite and solid electrolyte interphase(SEI)in lithium-ion batteries[J]. Journal of Power Sources,2022,529:231219.

[26] KIM K J,BALAISH M,WADAGUCHI M,et al.Solid-state Li–metal batteries:Challenges and horizons of oxide and sulfide solid electrolytes and their interfaces[J]. Advanced Energy Materials,2021,11(1):2002689.

[27] YAO N,SUN S Y,CHEN X,et al.The anionic chemistry in regulating the reductive stability of electrolytes for lithium metal batteries[J].Angewandte Chemie International Edition,2022,61(52):e202210859.

[28] HAN S Y,LEE C,LEWIS J A,et al.Stress evolution during cycling of alloy-anode solid-state batteries[J].Joule,2021,5(9):2450-2465.

[29] ZHANG B W,YUAN B T,YAN X,et al. Atomic mechanism of lithium dendrite penetration in solid electrolytes[J].Nature Communications,2025,16(1):1906.

[30] HUO H Y,JANEK J. Silicon as emerging anode in solid-state batteries[J]. ACS Energy Letters,2022,7(11):4005-4016.

[31] ZHAN X,LI M,LI S,et al.Challenges and opportunities towards silicon-based all-solid-state batteries[J].Energy Storage Materials,2023,61:102875.

[32] MIAO X,GUAN S D,MA C,et al.Role of interfaces in solid-state batteries[J].Advanced Materials,2023,35(50):2206402.

[33] NELSON D L,SANDOVAL S E,PYO J,et al.Fracture dynamics in silicon anode solid-state batteries[J].ACS Energy Letters,2024,9(12):6085-6095.

[34] HUO H Y,BAI Y,BENZ S L,et al. Decoupling the effects of interface chemical degradation and mechanical cracking in solid-state batteries with silicon electrode[J].Advanced Materials,2025,37(7):2415006.

[35] YU Z J,ZHANG X Y,FU C K,et al. Dendrites in solid-state batteries:Ion transport behavior,advanced characterization,and interface regulation[J]. Advanced Energy Materials,2021,11(18):2003250.

[36] CAO D X,SUN X,LI Q,et al.Lithium dendrite in allsolid-state batteries:Growth mechanisms,suppression strategies,and characterizations[J].Matter,2020,3(1):57-94.

[37] RICHARDS W D,MIARA L J,WANG Y,et al.Interface stability in solid-state batteries[J]. Chemistry of Materials,2016,28(1):266-273.

[38] SIVARAJ P, ABHILASH K, NITHYADHARSENI P, et al. Interfaces in solid-state batteries:challenges and design strategies[M]. Solid State Batteries:Design, Challenges and Market Demands. Springer.2022:193-218.

[39] WANG L L,XIE R C,CHEN B B,et al.In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries[J].Nature Communications,2020,11(1):5889.

[40] BANERJEE A,WANG X F,FANG C C,et al.Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes[J]. Chemical Reviews,2020,120(14):6878-6933.

[41] ZHANG L,DAI Y,LI C,et al.Recent advances in electrochemical impedance spectroscopy for solid-state batteries[J].Energy Storage Materials,2024,69:103378.

[42] VADHVA P,HU J,JOHNSON M J,et al. Electrochemical impedance spectroscopy for all-solid-state batteries:Theory,methods and future outlook[J]. ChemElectroChem,2021,8(11):1930-1947.

[43] FAN B,GUAN Z B,WANG H J,et al.Electrochemical processes in all-solid-state Li-S batteries studied by electrochemical impedance spectroscopy[J].Solid State Ionics,2021,368:115680.

[44] LI H L,ZHANG T,YANG Z,et al. Electrochemical impedance spectroscopy study on using Li10GeP2S12 electrolyte for all-solid-state lithium batteries[J]. International Journal of Electrochemical Science,2021,16(2):210229.

[45] FENG Z H,QIU X Y,CHEN X,et al. Interfacial dynamics study of NCM523-based semi-solid-state lithium-ion batteries by electrochemical impedance spectroscopy[J]. ACS Applied Materials&Interfaces,2024,16(32):42995-43005.

[46] HORI S,KANNO R,SUN X Y,et al.Understanding the impedance spectra of all-solid-state lithium battery cells with sulfide superionic conductors[J]. Journal of Power Sources,2023,556:232450.

[47]方婷婷,胡淑婉,张峥,等.原位技术在锂离子电池中的应用[J].电池工业,2023,27(5):240-245.

[48] LUCERO M,QIU S,FENG Z X.In situ characterizations of solid-solid interfaces in solid-state batteries using synchrotron X-ray techniques[J].Carbon Energy,2021,3(5):762-783.

[49] CHEN W H,CHEN X P,CHEN W H,et al. In situ atomic force microscopy and X-ray computed tomography characterization of all-solid-state lithium batteries:Both local and overall[J].Energy Technology,2023,11(4):2201372.

[50] LEWIS J A,CORTES F J Q,LIU Y,et al. Linking void and interphase evolution to electrochemistry in solidstate batteries using operando X-ray tomography[J].Nature Materials,2021,20(4):503-510.

[51] HAO S,DAEMI S R,HEENAN T M M,et al.Tracking lithium penetration in solid electrolytes in 3D by in situ synchrotron X-ray computed tomography[J].Nano Energy,2021,82:105744.

[52] SEITZMAN N,BIRD O F,ANDRYKOWSKI R,et al.operando X-ray tomography imaging of solid-state electrolyte response to Li evolution under realistic operating conditions[J].ACS Applied Energy Materials,2021,4(2):1346-1355.

[53] ZHANG X,BERLIN T U,OSENBERG M,et al.Visualizing the future:Recent progress and challenges on advanced imaging characterization for all-solid-state batteries[J].ACS Energy Letters,2025,10(1):496-525.

[54] NING Z Y,LI G C,MELVIN D L R,et al.Dendrite initiation and propagation in lithium metal solid-state batteries[J].Nature,2023,618(7964):287-293.

[55] HUO H Y,HUANG K,LUO W,et al. Evaluating interfacial stability in solid-state pouch cells via ultrasonic imaging[J].ACS Energy Letters,2022,7(2):650-658.

[56] XIAO Y H,YAO X X,SAPKOTA N,et al.Tempospatial manipulation of ultrasonics toward healing of solidstate batteries[J].Advanced Energy Materials,2025,15(14):2405026.

[57] SCHMIDT R D,SAKAMOTO J. In-situ,nondestructive acoustic characterization of solid state electrolyte cells[J]. Journal of Power Sources,2016,324:126-133.

[58] YADAV N G,FOLASTRE N,BOLMONT M,et al.Study of failure modes in two sulphide-based solid electrolyte all-solid-state batteries via in situ SEM[J].Journal of Materials Chemistry A,2022,10(33):17142-17155.

[59] MATSUDA R,TANAKA A,YANAGIHARA K,et al.Deterioration analysis of Si composite anodes for allsolid-state batteries during charge-discharge by auger electron spectroscopy and scanning electron microscopy with energy dispersive spectroscopy[J].The Journal of Physical Chemistry C,2023,127(33):16508-16514.

[60] NODA T,KIM H,WATANABE K,et al.Direct tracking of reaction distribution in an all-solid-state battery using operando scanning electron microscopy with energy dispersive X-ray spectroscopy[J]. Journal of the Ceramic Society of Japan,2023,131(10):651-658.

[61] ABHILASH K P, SIVARAJ P, PAL B, et al.Advanced characterization techniques to unveil the dynamics of challenging nano-scale interfaces in all-solidstate batteries[M]. Solid State Batteries:Design, Challenges and Market Demands. Springer,2022:219-244.

[62] ZHANG Z, SAID S, SMITH K, et al. Characterizing batteries by in situ electrochemical atomic force microscopy:a critical review[J]. Advanced Energy Materials,2021, 11(38):2101518.

[63] DIETRICH C, KOERVER R, GAULTOIS M W, et al. Spectroscopic characterization of lithium thiophosphates by XPS and XAS-a model to help monitor interfacial reactions in all-solid-state batteries[J]. Physical Chemistry Chemical Physics, 2018, 20(30):20088-20095.

[64] WU X H,VILLEVIEILLE C,NOVáK P,et al.Monitoring the chemical and electronic properties of electrolyte-electrode interfaces in all-solid-state batteries using operando X-ray photoelectron spectroscopy[J].Physical Chemistry Chemical Physics,2018,20(16):11123-11129.

[65] RIPHAUS N,STIASZNY B,BEYER H,et al. Editors'choice:Understanding chemical stability issues between different solid electrolytes in all-solid-state batteries[J].Journal of the Electrochemical Society,2019,166(6):A975-A983.

[66] NOMURA Y,YAMAMOTO K,HIRAYAMA T,et al. Direct observation of a Li-ionic space-charge layer formed at an electrode/solid-electrolyte interface[J].Angewandte Chemie International Edition,2019,58(16):5292-5296.

[67]阳如坤,柯奥.动力电池的智能制造[J].电池工业,2023,27(4):163-169.

[68] LI J Z,MA T H,LIU X,et al.A new method for in situ characterization of solid-state batteries based on optical coherence tomography[J].Sensors,2024,24(8):2392.

[69] XI J W,LI J Z,SUN H,et al. In-situ monitoring of internal temperature and strain of solid-state battery based on optical fiber sensors[J].Sensors and Actuators A:Physical,2022,347:113888.

[70] WANG S H,LA MONACA A,DEMOPOULOS G P.Composite solid-state electrolytes for all solid-state lithium batteries:Progress,challenges and outlook[J].Energy Advances,2025,4(1):11-36.

[71] ZHENG Y,YAO Y Z,OU J H,et al.A review of composite solid-state electrolytes for lithium batteries:Fundamentals,key materials and advanced structures[J].Chemical Society Reviews,2020,49(23):8790-8839.

[72] KIM K,KIM T,SONG G,et al. Trimethylsilyl compounds for the interfacial stabilization of thiophosphatebased solid electrolytes in all-solid-state batteries[J].Advanced Science,2023,10(33):2303308.

[73] LI L S,DUAN H H,ZHANG L T,et al. Optimized functional additive enabled stable cathode and anode interfaces for high-voltage all-solid-state lithium batteries with significantly improved cycling performance[J].Journal of Materials Chemistry A,2022,10(38):20331-20342.

[74] MEROLA L,SINGH V K,PALMER M,et al.Evaluation of Oxide|Sulfide heteroionic interface stability for developing solid-state batteries with a lithium-metal electrode:The case of LLZO|Li6PS5Cl and LLZO|Li7P3S11[J].ACS Applied Materials&Interfaces,2024,16(40):54847-54863.

基本信息:

DOI:10.19996/j.cnki.ChinBatlnd.2025.03.007

中图分类号:TM912

引用信息:

[1]韩策,申韶鹏,孙洪睿.面向锂电池固态化的界面特性及表征技术分析[J].电池工业,2025,29(03):184-194.DOI:10.19996/j.cnki.ChinBatlnd.2025.03.007.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文