nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg qikanlogo popupnotification paper
2024 03 v.28;No.160 132-141
实用化高比能准固态锂离子电池体系的研究
基金项目(Foundation):
邮箱(Email): li_yang11@126.com;
DOI: 10.19996/j.cnki.ChinBatlnd.2024.03.003
中文作者单位:

中国电子科技集团公司第十八研究所化学与物理电源重点实验室;

摘要(Abstract):

针对锂离子电池中电解液易泄漏、易燃烧,甚至引发爆炸等潜在安全问题,本文将单一的醚类小分子物质作为单体,与LiPF_6基电解液混合制备预聚前驱体,在60℃下原位衍生为非流动态的黏弹性凝聚体。通过调控单体比例、优化原位固化工艺,制备出高镍/高硅准固态锂离子电池。经测试,2.1 Ah电池体系在0.3 C电流下循环寿命达600圈,保持率比同期液态高1.8%。由更高硅含量的负极构成的36 Ah电池体系的比能量高达351 Wh/kg, 500圈循环容量保持率达88.36%,准固态锂离子电池具有优异的低温性能,-20℃下容量保持率达85.6%,结果表明固化电解质在电池层内部及层间起到了良好的结构稳定性作用。该高比能准固态锂离子电池体系的开发为后续固态电池的进一步实用化提供了切实可行的途径。

关键词(KeyWords): 固化电解质;;原位固化工艺;;准固态锂离子电池;;循环寿命;;比能量
参考文献 [1] 李卓,郭新.面向高比能固态电池的聚合物基电解质固化技术[J].储能科学与技术,2024,13(1):212-230.
[2] 薛媛媛,陈清晨.新能源汽车电池类型现状及发展趋势研究[J].时代汽车,2023(19):106-108.
[3] 李杨,丁飞,桑林,等.全固态锂离子电池关键材料研究进展[J].储能科学与技术,2016,5(5):615-626.
[4] 廖兴群.高能量密度锂离子电池钴酸锂的制备及界面稳定性研究[D].长沙:中南大学,2022.
[5] WEI A J,MU J P,HE R,et al.Preparation of Li4Ti5O12/carbon nanotubes composites and LiCoO2/Li4Ti5O12 full-cell with enhanced electrochemical performance for high-power lithium-ion batteries[J].Journal of Physics and Chemistry of Solids,2020,138:109303.
[6] SKVORTSOVA I A,ORLOVA E D,BOEV A O,et al.Comprehensive analysis of boron-induced modification in LiNi0.8Mn0.1Co0.1O2 positive electrode material for lithium-ion batteries[J].Journal of Power Sources,2023,583:233571.
[7] GAO S,CHENG Y T,SHIRPOUR M.Effects of cobalt deficiency on nickel-rich layered LiNi0.8Co0.1Mn0.1O2 positive electrode materials for lithium-ion batteries[J].ACS Applied Materials & Interfaces,2019,11(1):982-989.
[8] 顿温新,汪宇凡,乔顺攀,等.FEC、PST、MMDS、DTD对高电压NCM523电池性能的影响[J].电池工业,2023,27(5):235-239.
[9] ZHANG B,ZHANG Y N,DUAN J G,et al.Suppressing the Mn dissolution in LiMn2O4 positive materials toward long-life lithium ion battery through Gd2O3 surface modification[J].Ionics,2023,29(1):43-50.
[10] WANG C,ZENG Y,SHEN L F,et al.Enhancement on the selective flotation separation of carbon coated LiFePO4 and graphite electrode materials[J].Separation and Purification Technology,2023,311:123252.
[11] 周代娟,金亮,汪俊,等.三维多孔碳气凝胶/磷酸铁锂复合电极的锂离子电池性能研究[J].安徽化工,2023,49(4):69-73.
[12] 汪征东,陈娟,常海涛.锂离子电池硅基负极材料的研发进展[J].电池工业,2021,25(5):247-252.
[13] QU X L,TANG Y,DU A B,et al.Polymer electrolytes-new opportunities for the development of multivalent ion batteries[J].Chemistry-An Asian Journal,2021,16(21):3272-3280.
[14] BASKORO F,WONG H Q,YEN H J.Strategic structural design of a gel polymer electrolyte toward a high efficiency lithium-ion battery[J].ACS Applied Energy Materials,2019,2(6):3937-3971.
[15] LU Q W,WANG C H,BAO D N,et al.High-performance quasi-solid-state pouch cells enabled by in-situ solidification of a novel polymer electrolyte[J].ENERGY & ENVIRONMENTAL MATERIALS,2023,6(4):12447.
[16] JIN B H,ZHAO Y Y,YE D Z,et al.Mechanically robust and highly electrochemical performance of polyethylene oxide gel polymer electrolyte[J].Journal of Applied Polymer Science,2024,141(14):e55176.
[17] XIAO J,HUANG Y,ZHENG W J,et al.A strategy of adding LDPE particles to enhance the high-temperature endurance of PMMA-based GPE for lithium-ion battery[J].Bulletin of Materials Science,2023,46(2):87.
[18] WANG Y,CHEN Z,WU Y X,et al.PVDF-HFP/PAN/PDA@LLZTO composite solid electrolyte enabling reinforced safety and outstanding low-temperature performance for quasi-solid-state lithium metal batteries[J].ACS Applied Materials & Interfaces,2023,15(17):21526-21536.
[19] HUANG R L,XU R C,ZHANG J T,et al.PVDF-HFP-SN-based gel polymer electrolyte for high-performance lithium-ion batteries[J].Nano Research,2023,16(7):9480-9487.
[20] WANG Y J,KIM D.PEGDA/PVDF/F127 gel type polymer electrolyte membranes for lithium secondary batteries[J].Journal of Power Sources,2007,166(1):202-210.
[21] JAUMAUX P,LIU Q,ZHOU D,et al.Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries[J].Angewandte Chemie,2020,59(23):9134-9142.
[22] KIM P S,LE MONG A,KIM D.Thermal,mechanical,and electrochemical stability enhancement of Al2O3 coated polypropylene/polyethylene/polypropylene separator via poly(vinylidene fluoride)-poly(ethoxylated pentaerythritol tetraacrylate) semi-interpenetrating network binder[J].Journal of Membrane Science,2020,612:118481.
[23] MO S K,AN H W,LIU Q S,et al.Multistage bridge engineering for electrolyte and interface enables quasi-solid batteries to operate at -40 ℃[J].Energy Storage Materials,2024,65:103179.
[24] LI X L,QIAN K,HE Y B,et al.A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances[J].Journal of Materials Chemistry A,2017,5(35):18888-18895.
[25] MA P Y,MIRMIRA P,ENG P J,et al.Co-intercalation-free ether electrolytes for graphitic anodes in lithium-ion batteries[J].Energy & Environmental Science,2022,15(11):4823-4835.
[26] YANG G,FRISCO S,TAO R M,et al.Robust solid/electrolyte interphase (SEI) formation on Si anodes using glyme-based electrolytes[J].ACS Energy Letters,2021,6(5):1684-1693.
[27] XIA D W,KAMPHAUS E P,HU A Y,et al.Design criteria of dilute ether electrolytes toward reversible and fast intercalation chemistry of graphite anode in Li-ion batteries[J].ACS Energy Letters,2023,8(3):1379-1389.
[28] LIU F Q,WANG W P,YIN Y X,et al.Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries[J].Science Advances,2018,4(10):eaat5383.
[29] 赵冬梅,李杨,刘兴江.新型固化电解质及锂离子电池制备方法:中国,CN116093423A[P].2023-05-09.
[30] LIU M,ZHOU D,HE Y B,et al.Novel gel polymer electrolyte for high-performance lithium-sulfur batteries[J].Nano Energy,2016,22:278-289.
[31] 郭来宾.凝胶聚合物电解质现场热聚合工艺及性能研究[D].沈阳:沈阳理工大学,2008.

基本信息:

DOI:10.19996/j.cnki.ChinBatlnd.2024.03.003

中图分类号:TM912

引用信息:

[1]赵冬梅,李杨,于智航等.实用化高比能准固态锂离子电池体系的研究[J].电池工业,2024,28(03):132-141.DOI:10.19996/j.cnki.ChinBatlnd.2024.03.003.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文