nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 02 v.29 110-121
微电滥用条件下磷酸铁锂和三元锂离子电池的性能衰减研究
基金项目(Foundation): 国家自然科学基金(52207242);国家自然科学基金(52307248)
邮箱(Email): 7wangxueyuan@tongji.edu.cn;
DOI: 10.19996/j.cnki.ChinBatlnd.2025.02.004
中文作者单位:

同济大学汽车学院;同济大学新能源汽车工程中心;

摘要(Abstract):

当前锂离子电池被广泛应用于清洁交通和规模储能场景中,然而由于电池制造单体一致性以及服役容量衰减速度的固有差异性,电池在运行过程中常出现轻微过度充电这一电滥用工况。进一步的滞后维护会带来循环积累效应,对电池的规模成组应用造成可靠性挑战和安全隐患。因此对主要电池类型在所述工况下的性能衰减特性进行研究具有重要意义。本文以磷酸铁锂和镍钴锰三元锂离子电池为研究对象,开展了正常循环老化和微过充循环老化试验。结果显示,磷酸铁锂电池在两种循环工况下的性能衰减特性差异较小,而三元电池在微过充循环工况下的性能衰减速度显著快于正常循环工况。结合电化学阻抗测试,通过等效电路模型和弛豫时间分布等分析方法,揭示了微过充循环工况下三元电池健康状态显著下降的主要原因:固体电解质界面膜等效电阻和传荷电阻的增长导致更严重的锂库存损失。相比之下,磷酸铁锂电池对微电滥用循环工况的抗性更为优异,固体电解质界面膜等效电阻和传荷电阻变化较小,相应的锂库存损失有限,因此在设定的循环圈数内,其性能衰减幅度与正常循环工况相比并未显著增加。

关键词(KeyWords): 锂离子电池;微电滥用;过充循环;性能衰减;电化学阻抗;等效电路模型;弛豫时间分布
参考文献

[1] HUANG R J,WEI G,WANG X Y,et al. A nondestructive heating method for lithium-ion batteries at low temperatures[J]. Renewable and Sustainable Energy Reviews,2024,205:114868.

[2] LI K J,LI J H,GAO X L,et al.Effect of preload forces on multidimensional signal dynamic behaviours for battery early safety warning[J].Journal of Energy Chemistry,2024,92:484-498.

[3] CHEN S Q,ZHANG Q,WANG F C,et al. An electrochemical-thermal-aging effects coupled model for lithium-ion batteries performance simulation and state of health estimation[J]. Applied Thermal Engineering,2024,239:122128.

[4] CAI J X,WEI X Z,WANG X Y,et al. Revealing effects of pouch Li-ion battery structure on fast charging ability through numerical simulation[J]. Applied Energy,2025,377:124438.

[5] DAI H F,JIANG B,HU X S,et al.Advanced battery management strategies for a sustainable energy future:Multilayer design concepts and research trends[J].Renewable and Sustainable Energy Reviews,2021,138:110480.

[6] MA T Y,WU S Y,WANG F,et al. Degradation mechanism study and safety hazard analysis of overdischarge on commercialized lithium-ion batteries[J].ACS Applied Materials&Interfaces,2020,12(50):56086-56094.

[7] WEI G,HUANG R J,ZHANG G X,et al.A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards[J].Applied Energy,2023,349:121651.

[8] FENG L,JIANG L H,LIU J L,et al.Dynamic overcharge investigations of lithium ion batteries with different state of health[J].Journal of Power Sources,2021,507:230262.

[9] DIAO W P,XU B,PECHT M.Charging induced electrode layer fracturing of 18650 lithium-ion batteries[J].Journal of Power Sources,2021,484:229260.

[10] WANG Z P,YUAN J,ZHU X Q,et al.Overcharge-tothermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials:A comparison study[J].Journal of Energy Chemistry,2021,55:484-498.

[11] MAO N,ZHANG T,WANG Z R,et al.A systematic investigation of internal physical and chemical changes of lithium-ion batteries during overcharge[J]. Journal of Power Sources,2022,518:230767.

[12] ZHANG Y,LI S Y,MAO B B,et al. A multi-level early warning strategy for the LiFePO4 battery thermal runaway induced by overcharge[J]. Applied Energy,2023,347:121375.

[13] HUANG P F,ZENG G H,HE Y Y,et al.Damage evolution mechanism and early warning using long shortterm memory networks for battery slight overcharge cycles[J].Renewable Energy,2023,217:119171.

[14] ZHANG L,HUANG L W,ZHANG Z S,et al.Degradation characteristics investigation for lithium-ion cells with NCA cathode during overcharging[J]. Applied Energy,2022,327:120026.

[15] WANG H B,XU H,ZHANG Z L,et al.Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway:A comparative study[J].eTransportation,2022,13:100190.

[16] ZHANG H T,WU X H,LI Z G,et al. Fulldimensional analysis of gaseous products within Li-ion batteries by on-line GC-BID/MS[J].Advanced Energy Materials,2024,14(24):2400397.

[17] HE R,HE Y L,XIE W L,et al.Comparative analysis for commercial li-ion batteries degradation using the distribution of relaxation time method based on electrochemical impedance spectroscopy[J]. Energy,2023,263:125972.

[18] JIANG B,ZHU J G,WANG X Y,et al.A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries[J]. Applied Energy,2022,322:119502.

[19]崔莞琪,李丽娟,宋林霏,等. DRT方法分析过充对阻抗影响[J/OL].电池工业,1-8[2025-01-11].http://kns.cnki. net/kcms/detail/32.1448. TM. 20241226.1421.006.html.

[20]姚晗欣,王学远,袁永军,等.基于电化学阻抗谱的电池组不一致性诊断[J].汽车工程,2024,46(7):1167-1176.

[21] ZHUANG Z X,LI J,LUAN W L,et al.Distribution of relaxation times-based analysis of aging mechanisms and prediction of heating domain for alternating current pulse self-heating lithium-ion batteries[J]. Journal of Power Sources,2024,623:235442.

[22] ZHU Y L,JIANG B,ZHU J G,et al.Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning[J].Energy,2023,284:129283.

基本信息:

DOI:10.19996/j.cnki.ChinBatlnd.2025.02.004

中图分类号:TM912

引用信息:

[1]魏港,黄冉军,姜波等.微电滥用条件下磷酸铁锂和三元锂离子电池的性能衰减研究[J].电池工业,2025,29(02):110-121.DOI:10.19996/j.cnki.ChinBatlnd.2025.02.004.

基金信息:

国家自然科学基金(52207242);国家自然科学基金(52307248)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文